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Abstract

Cellular responses to perturbations are a cornerstone for understanding biological mecha-
nisms and selecting drug targets. While machine learning models offer tremendous potential
for predicting perturbation effects, they currently struggle to generalize to unobserved cel-
lular contexts. Here, we introduce State, a transformer model that predicts perturbation
effects while accounting for cellular heterogeneity within and across experiments. State pre-
dicts perturbation effects across sets of cells and is trained using gene expression data from
over 100 million perturbed cells. State improved discrimination of effects on large datasets
by more than 30% and identified differentially expressed genes across genetic, signaling
and chemical perturbations with significantly improved accuracy. Using its cell embedding
trained on observational data from 167 million cells, State identified strong perturbations
in novel cellular contexts where no perturbations were observed during training. We further
introduce Cell-Eval, a comprehensive evaluation framework that highlights State’s ability
to detect cell type-specific perturbation responses, such as cell survival. Overall, the per-
formance and flexibility of State sets the stage for scaling the development of virtual cell
models.
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1. Introduction
Therapeutic discovery relies on accurately predicting the impact of cellular perturbations.
Ranging from genetic interventions such as CRISPR or RNAi, to chemical treatments with
small molecules or biologics, these perturbations serve not only to induce desired pheno-
types, but are also central to establishing causal relationships between genes, pathways,
and cellular outcomes, thus uncovering deeper insights into cellular function. By selectively
disrupting specific components of cellular systems, scientists can identify causal drivers of
phenotypes, an essential step in both target identification and drug development. Exper-
imental perturbation technologies enable researchers to probe the effects of interventions
along two main axes: the type of perturbation applied and the cellular or biological context.
Both factors profoundly influence the system’s response. Advances in functional genomics
now enable large-scale screening in specific cellular contexts, often through approaches like
pairing pooled CRISPR perturbations with transcriptome-wide readouts at the single-cell
level (Dixit et al., 2016; Datlinger et al., 2017; Przybyla and Gilbert, 2022; Replogle et al.,
2022; Norman et al., 2019; Feng et al., 2024). However, these assays remain cost-prohibitive
and labor-intensive to scale across many contexts. Improving our ability to generalize pertur-
bation response predictions across diverse biological contexts would greatly accelerate causal
target discovery, deepen our understanding of cellular function and disease, and in turn fa-
cilitate the design of context-specific interventions, creating a foundation for personalized
treatment predictions.

A range of computational approaches have been developed to tackle this problem (Lot-
follahi et al., 2019, 2023; Bunne et al., 2023; Roohani et al., 2024a; Cui et al., 2024; Hao
et al., 2024; Ji et al., 2021). However, despite the rapid growth of perturbation datasets
in size and scope, proportional gains in predictive capabilities have not been achieved (Wu
et al., 2024; Chevalley et al., 2022; Li et al., 2024b,a; Wenteler et al., 2024). Current deep
learning methods do not consistently outperform linear models when generalizing pertur-
bation effects across cellular contexts (Wu et al., 2024; Li et al., 2024b). We argue that
this is primarily caused by two major sources of noise that mask true perturbation effects in
single-cell perturbation datasets: biological heterogeneity within the studied population that
is not explained by experimental covariates, and technical or experimental variation across
different perturbation datasets (Fig. 1A and Eq. 1).

The challenge of modeling biological heterogeneity is driven by an inherent limitation of
single-cell RNA sequencing: the destruction of cells during measurement prevents observa-
tion of their pre-perturbation states and accurate inference of each cell’s specific perturbation
response. To address this, perturbation effects are inferred by comparing populations of per-
turbed and unperturbed cells, while attempting to resolve heterogeneity at the level of cell
type, batch, or other population-level covariates. Some approaches assume that within-
population heterogeneity is negligible compared to perturbation effects and simply map per-
turbed cells to randomly selected unperturbed cells with shared covariates (Roohani et al.,
2024a), a mapping approach that has also been tested with expressive transformer-based
models (Cui et al., 2024; Hao et al., 2024). Although effective in datasets where perturba-
tion effects are strong (Norman et al., 2019), these approaches often fail to generalize when
perturbation effects are more subtle and heterogeneity in the unperturbed population may
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even exceed the perturbation signal. This is particularly evident in cases of variation in cell
cycle state, lineage bias, or pre-existing epigenetic programs and even more so when the basal
population is itself drawn from diverse cell types such as in in vivo studies (Lara-Astiaso
et al., 2023; Saunders et al., 2024). Other models treat cell populations as distributions,
employing generative approaches like variational autoencoders to learn data-generating dis-
tributions or explicitly disentangle labeled and unlabeled sources of variation (Lotfollahi
et al., 2023; Piran et al., 2024; Bereket and Karaletsos, 2024; Weinberger et al., 2023; Lopez
et al., 2023; Papalexi et al., 2021; Weinberger et al., 2024; Lopez et al., 2018; Song et al.,
2025). However, in practice, these models often fail to meaningfully outperform methods
that do not explicitly model distributional structure when applied to the prediction of per-
turbation effects (Wu et al., 2024). Optimal transport-based methods that map unperturbed
to perturbed populations have also been proposed, but their applicability has been limited
by strong assumptions and poor scalability (Bunne et al., 2023, 2024b; Jiang et al., 2024;
Ryu et al., 2024).

The second major source of noise is technical, arising from limitations in the data itself
rather than the model. In genetic perturbation experiments, the intended effects, such
as gene knockout or knockdown, may not always occur in each targeted cell, leaving cells
incorrectly labeled as perturbed (Peidli et al., 2024; Papalexi et al., 2021; Weinberger et al.,
2023). Additional variability from experimental conditions, including transduction efficiency,
RNA sequencing depth, reagent chemistry, and timing of collection, further complicate data
integration across different studies (Bock et al., 2022). Together, these technical confounders
dilute the true perturbation-derived signal in the data, thereby constraining the development
of models that can generalize robustly across distinct datasets. While single-cell foundation
models have emerged as a strategy for learning robust cell representations across datasets
(Theodoris et al., 2023; Rosen et al., 2023; Cui et al., 2024; Hao et al., 2024; Ho et al.,
2024; Chen and Zou, 2024; Pearce et al., 2025; Heimberg et al., 2016; Szałata et al., 2024),
they are currently unable to meaningfully distinguish between subtler variations such as
those driven by genetic perturbations as they have generally been optimized to differentiate
between broader categories such as cell type (Luecken et al., 2022, 2025).
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Modeling heterogeneity in single cell perturbation experiments

The observed log-normalized perturbed expression state of each cell (Xp) can be mod-
eled based on its unperturbed state. However, since the unperturbed state of the cell
is unobservable, we approximate Xp as

X̂p ∼ T̂p(Dbasal) + H(Dbasal) + ε, ε ∼ Pε (1)

where
• Dbasal: The distribution of the unperturbed, baseline cell population.
• T̂p(Dbasal): True effect caused by perturbation p on the population.
• H(Dbasal): Biological heterogeneity of the baseline population.
• ε: Experiment-specific technical noise, assumed independent of the unperturbed

cell state and Dbasal.

This X̂p serves as a distributional analogue of Xp, that is Xp
d≈ X̂p, enabling modeling

based on observable population characteristics.

To overcome these challenges and advance towards effective virtual models of cell state,
we introduce State, a flexible and expressive architecture for modeling cellular heterogene-
ity and perturbation effects within and across diverse datasets. State is a multi-scale model
with two complementary modules: a State Transition model (ST) and a State Embedding
model (SE). ST is a transformer that uses self-attention to model perturbation-induced trans-
formations across sets of cells, where each cell is represented either by its raw gene expression
profile or a learned embedding. SE is pretrained to generate expressive cell embeddings by
learning gene expression variation between cells across diverse datasets (Zhang et al., 2025;
Program et al., 2025; Youngblut et al., 2025), yielding representations that are robust to tech-
nical variation and optimized for detecting perturbation effects. By leveraging self-attention
over sets of cells, ST can flexibly capture biological heterogeneity without relying on explicit
distributional assumptions. Together, SE and ST enable State to generalize across many
datasets and contexts, improving transferability of perturbation-response modeling.

The multi-scale architecture of State enables it to leverage both 167 million cells of
observational data to train its embedding model and over 100 million cells of perturbation
data to train a transition model. We evaluate State on several large-scale datasets, includ-
ing drug-based perturbations (Zhang et al., 2025; Srivatsan et al., 2020), cytokine signaling
perturbations (Parse Biosciences, 2023), and genome-scale genetic perturbations (Replogle
et al., 2022; Nadig et al., 2025; Jiang et al., 2025; McFaline-Figueroa et al., 2024; Feng et al.,
2024). To fully assess the ability of State and other models to simulate cellular pertur-
bations, we present Cell-Eval, a comprehensive evaluation framework that goes beyond
conventional metrics based on expression counts to include a suite of biologically relevant
and interpretable metrics focused on differential expression prediction and estimation of
perturbation strength.

Across all metrics and data scales spanning multiple orders of magnitude, State con-
sistently outperforms both naive and state-of-the-art models. To our knowledge, it is the
first model to consistently outperform simple linear baselines in generalizing perturbation
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effects across cellular contexts. Moreover, we show that modeling perturbations in lower data
regimes with the State embedding enables the detection of strong responses in novel cell
types, when no perturbation data for those cell types are used during training. For example,
we demonstrate that pretraining State on the Tahoe-100M dataset (Zhang et al., 2025)
improves the generalization of perturbation effects to unseen cellular contexts. Thus, State
presents a scalable approach for learning perturbation effects that transfer across datasets
and experimental settings.

Beyond empirical performance, we provide novel theoretical results that connect State
to Optimal Transport (OT) theory, a commonly used method for modeling cellular hetero-
geneity in response to perturbations (Bunne et al., 2023; Chen et al., 2024; Demir et al., 2024;
Dong et al., 2023; Bunne et al., 2024b; Ryu et al., 2024; Jiang et al., 2024). Specifically, we
prove that, under mild regularity conditions and in an asymptotic limit, the unique contin-
uous OT map between unperturbed and perturbed cell populations lies within the solution
family of State. This result positions State as a generalization of OT-based approaches:
while it can recover the classical OT solution, it also allows for more flexible modeling of
perturbation effects that may not adhere to the assumptions and constraints imposed by
standard OT formulations.

2. Results
2.1. Building the State Transition model for predicting perturba-

tion effects on sets of cells

State is a multi-scale machine learning architecture that predicts downstream transcrip-
tomic responses to cellular perturbations, including gene expression changes, differentially
expressed genes, and overall perturbation effect sizes (Fig. 1B). It leverages (i) at the molec-
ular level, embeddings that represent individual genes across experiments and species; (ii) at
the cellular level, embeddings that capture the transcriptomic state of each individual cell,
represented either as the cell’s log-normalized transcriptome or as embeddings generated
by the State Embedding model (SE); and (iii) at the population level, the State Transi-
tion model (ST) learns perturbation effects across sets of cells. State can leverage both
observational and interventional data during training: SE is trained on 167 million human
cells drawn from multiple large observational single-cell repositories (Youngblut et al., 2025;
Zhang et al., 2025; Program et al., 2025), and ST is trained on over 100 million chemically
or genetically perturbed cells from large-scale single-cell screens (Zhang et al., 2025; Parse
Biosciences, 2023; Replogle et al., 2022).

The core motivation for ST is to model cellular heterogeneity beyond known covariates,
such as cell type and perturbation label, to improve perturbation response prediction. To
achieve this, cells are first stratified by known covariates (Fig. S1). For each covariate-
matched perturbed group, ST constructs non-disjoint cell sets of fixed size, which serve as
input during training and are paired with unperturbed control cell sets of equal size and
matched covariates. Conditioned on the perturbation, ST uses a transformer backbone to
perform repeated bidirectional self-attention and feed-forward operations across control cell
sets (Section 4.3, Fig. S2A). This enables ST to model heterogeneity within the input cell
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Figure 1: State: A transformer-based model for predicting perturbation effects across
sets of cells. (A) Modeling perturbation effects at single-cell resolution requires disentangling bi-
ological signals from confounding variation introduced by noise, batch effects, and heterogeneity
across similarly treated cells. (B) State is a multi-scale machine learning architecture that oper-
ates across genes, individual cells, and cell populations. The core State Transition model (ST) learns
perturbation effects by training on sets of perturbed and unperturbed cell populations grouped by
shared covariates (e.g., perturbation type, cell context, and batch). ST can operate directly on gene
expression profiles or on compact cell representations from the State Embedding model (SE), which
learns information-rich embeddings from large-scale observational data. This multi-scale architec-
ture allows ST to effectively simulate perturbation experiments in silico and support downstream
analyses such as expression quantification, differential gene expression analysis, and estimation of
perturbation effect sizes. (C) ST is a transformer model that takes sets of unperturbed cell popu-
lations and perturbation labels as input to predict corresponding perturbed cell populations. When
using gene expression profiles to represent cells, ST directly predicts transcriptomes at single-cell res-
olution. When using State embedding inputs, ST predicts output embeddings that are then decoded
with an MLP to predict transcriptomes. (D) Increasing the size of cell sets improves validation loss
up to an optimal point, with best performance on the Tahoe-100M dataset achieved when covariate-
matched groups are chunked into sets of 256 cells. The full ST model significantly outperforms a
pseudobulk model (State with mean-pooling instead of self-attention) and a single-cell variant
(State with set size = 1). Removing the self-attention mechanism (State w/o self-attention) sub-
stantially degrades performance, highlighting the importance of modeling interactions between cells
within a set.
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set while predicting downstream transcriptomic responses to perturbation (Fig. 1C).

ST is trained using a maximum mean discrepancy (MMD) loss between predicted and
observed transcriptomes of perturbed cells. While ST learns perturbation effects across
distributions of cells, it still predicts perturbed cell profiles for individual cells, a feature
that is important for learning distributional structure of a perturbed population. Empirical
results show that increasing cell set size, up to a threshold, achieves much lower validation loss
compared to losses on individual cells, whether they are true samples or pseudobulked across
neighboring cells (Fig. 1D). Furthermore, removing the self-attention leads to degraded
performance (Fig. 1D), highlighting the value of flexible set-based self-attention for modeling
cellular heterogeneity relevant to perturbation response prediction.

2.2. State outperforms baselines in predicting perturbation effects
across cell contexts

We tested the State architecture on a generalization task assessing its ability to predict
perturbation effects in new cellular contexts, such as unseen cell lines or donors. Specifically,
we implemented an underrepresented context generalization task (Section 4.2.1), in which
each model had access to 30% of perturbations in the test context during training (Fig. 2A).
We benchmarked performance against several baselines (Section 4.7.5), including a simple
linear model (Ahlmann-Eltze et al., 2024), two autoencoder-based models CPA (Lotfollahi
et al., 2023) and scVI (Lopez et al., 2018), and a single cell foundation model scGPT (Cui
et al., 2024). We also included two naive mean-based baselines that explain a significant
portion of observed variance in cell-type generalization tasks (Fig. 2A). The “context mean”
baseline predicts the average expression observed in the training data for a given cell con-
text across all perturbations (Kernfeld et al., 2023), while the “perturbation mean” baseline
predicts the average perturbation effect across training cell contexts applied to the basal
expression for a given cell context. In our results, we refer to baselines predicting mean
expression or mean perturbation effect as “mean baselines” and the other models as “baseline
models”. All models (including State) were trained to predict the log-expression of the top
2,000 highly varying genes (HVGs), a commonly used feature space for baseline comparisons.

We evaluated State on chemical perturbation data from the Tahoe-100M dataset (Zhang
et al., 2025), cytokine signaling perturbations from Parse Biosciences (Parse Biosciences,
2023) (abbreviated Parse-PBMC), and genetic perturbation data from Replogle et al. (2022)
and Nadig et al. (2025) (abbreviated Replogle-Nadig)(Fig. 2B). Tahoe-100M includes per-
turbation responses from 50 diverse cancer cell lines treated under 1,138 conditions involving
380 distinct drug perturbations. Parse-PBMC contains 90 cytokine perturbation responses
across 12 donors and 18 cell types. Replogle-Nadig consists of 2,024 genetic perturbations
applied to four distinct cell lines after filtering perturbations with low on-target efficacy. For
all datasets, we trained State directly on cell representations derived from highly variable
genes (ST+HVG). Training and test contexts were drawn only from one dataset at a time.

To test generalization, we implemented a careful data splitting strategy: for the Tahoe-
100M dataset, we plotted a PCA using pseudobulked expression values for the fifty available
cell lines to visually identify distinct phenotypic clusters. From these, five cell lines were
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Figure 2: State outperforms existing baselines in predicting perturbation effects
across cell contexts. (A) Underrepresented context generalization task. Models were trained
on perturbation data from one or more cell contexts and evaluated on their ability to predict the
effects of the same perturbations in a largely held-out and underrepresented target context. (Con-
tinued on next page)
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Figure 2 (Continued): The “perturbation mean” baseline estimates effects by averaging ob-
served differences between perturbed and control states across training cell contexts. The “context
mean” baseline uses the average expression profile of the target cell context across all training pertur-
bations. (B) Models were trained and evaluated on chemical, signaling, and genetic perturbation
datasets (Zhang et al., 2025; Parse Biosciences, 2023; Replogle et al., 2022; Nadig et al., 2025).
Training and test contexts were drawn from one dataset at a time. Comparisons included the mean
baselines from (A), a simple linear model (Ahlmann-Eltze et al., 2024), autoencoder-based models
(scVI (Lopez et al., 2018), CPA (Lotfollahi et al., 2023)), and a foundation model (scGPT (Cui
et al., 2024)). (C) Performance was assessed using Cell-Eval metrics (Section 4.7) on standard
Perturb-Seq outputs: expression counts and differentially expressed (DE) genes, with the following
highlighted: (D) Perturbation discrimination score, measured using inverse normalized rank. (E)
Pearson correlation between predicted and observed change in post-perturbation log-normalized
expression counts. (F) Area under the Precision-Recall curve for model predictions of DE genes.
(G) Precision-Recall curves for model predictions of DE genes. (H) Spearman correlation of log
fold changes for significant DE genes between predictions and true values. (I) Overlap in top DE
genes, defined as the percentage of significant genes in observed data that were also predicted as
significant in predictions. (J) Spearman correlation between predicted and true overall perturba-
tion effect size. (K) Confusion matrix comparing predicted and observed perturbation effect sizes,
measured by the number of differentially expressed genes per perturbation.

chosen to be in the test set for final model evaluation (Fig. S3). No data from these cell
lines was observed throughout the model development process. In a separate evaluation,
we iteratively held out all cells from 11 distinct organs for testing. For the Parse-PBMC
dataset, we held out 4 random donors from the 12 donor cell lines. For each of these held-out
contexts, 30% of its perturbations were randomly removed from the test data and included
in the respective training data. For the Replogle-Nadig dataset, we conducted an evaluation
by iteratively holding out one cell line as a test set. For each iteration, models were trained
on the remaining three cell lines plus an additional 30% of perturbations randomly sampled
from the test cell line.

Our evaluation framework captures key outputs of a single-cell perturbation experiment
which are well represented through three readout categories: (1) gene expression counts, (2)
differential expression (DE) statistics, including identification of differentially expressed genes
(DEGs) and their log fold changes, and (3) the magnitude of the perturbation effect (e.g.,
the total number of DEGs) (Fig. 2B). To comprehensively assess model performance across
these dimensions, we developed a suite of evaluation metrics, Cell-Eval (Section 4.7,
Fig. 2C). These metrics are designed to be both expressive and biologically interpretable,
offering complementary insights. For example, while overlap in DEGs helps link predictions
to specific pathways giving them biological significance, it may be less sensitive to fine-grained
changes compared to the perturbation discrimination score, which captures the similarity
between predicted and true perturbation effects. Moreover, by benchmarking against naive
baselines, these metrics provide a clearer assessment on generalization performance versus
memorization of training-set effects.

A central goal of perturbation experiments is to identify perturbations that optimally
drive desired transcriptomic states. For a model to do this, it must be able to effectively
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distinguish between different perturbation effects. Using a variant of the perturbation dis-
crimination score adapted from Wu et al. (2024), which ranks predicted post-perturbation
expression profiles by their similarity to the true perturbation outcomes, State achieved
an absolute improvement of 54% and 29% on the Tahoe-100M and PBMC datasets respec-
tively (Fig. 2D). On genetic perturbation datasets, State matched the performance of the
perturbation mean baseline and significantly outperforms all other baseline models.

To directly assess the accuracy of predicted gene expression counts, we computed the
Pearson correlation between observed and predicted perturbation-induced expression changes.
On this metric, State outperformed baselines by 63% on Tahoe-100M, 47% on Parse-PBMC
and 5% on Replogle-Nadig. For the genetic perturbation dataset, this task is more challeng-
ing due to the subtler effects of perturbations. Notably, on this dataset, the best-performing
baseline with performance comparable to State was the context mean rather than the per-
turbation mean. This highlights that State’s predictions were not trivially similar to either
mean baseline (Fig. 2E).

To evaluate State beyond global ranking and correlation metrics, we conducted a sys-
tematic differential-expression (DE) analysis. Using a Wilcoxon rank-sum test, we identified
differentially expressed genes post-perturbation, calculating both their log fold changes and
adjusted p-values (false discovery rate). We decomposed our DE analysis into assessments of
each component (p-value and log fold change) independently as well as in combination (DE
gene overlap). To evaluate p-values for model-predicted DE genes, we first computed true
significantly DE genes using the experimentally observed perturbation data while setting
an FDR threshold of 0.05. P-values derived from model predictions were then compared to
true significance levels using a precision-recall curve. Measuring the area under the preci-
sion recall curve, we found that State consistently outperforms all baselines across datasets
(Fig. 2F). Notably, State’s AUPRC is 184% higher than the next best approach for the
genetic perturbation dataset (Fig. 2G, Fig. S4).

For evaluating log fold change, we limited our analysis to true significant DE genes
to limit confounding from predicted significance levels. The Spearman correlation was com-
puted between the predicted and true log fold changes for each of these genes. Some machine
learning baselines such as scVI showed strong performance on this metric, yet State’s per-
formance was still over 10% higher than baselines for both Tahoe-100M and Parse-PBMC
datasets (Fig. 2H). To simulate a practical DE analysis workflow, we selected DE genes
using an FDR threshold of 0.05 applied to model-predicted p-values, then ranked this set
by log fold change and compared it to the equivalent set derived from true p-values and
fold changes. Using different setting of overlap size (k = 50, 100, 200), we observe strong
performance by State across all three datasets and all three settings of k (Fig. S5A). For
completeness, we also evaluated the model on a variable sized overlap by setting k to be the
same size as the number of true differentially expressed genes. State is twice as good as
the next base baseline (scGPT) on the Tahoe-100M dataset and 43% better than the cor-
responding best baseline (Linear) on the Parse-PBMC dataset (Fig. 2I). To assess a more
practically relevant scenario of minimizing false positives, we also measured the proportion
of predicted top k DE genes that were significant at all in the observed experimental data
(precision at k). Across datasets and settings of k, State showed much stronger performance

10

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 10, 2025. ; https://doi.org/10.1101/2025.06.26.661135doi: bioRxiv preprint 

https://doi.org/10.1101/2025.06.26.661135
http://creativecommons.org/licenses/by/4.0/


than baselines (Fig. S5B).

Moving beyond identification of individual DE genes, we assessed the accuracy of models
in predicting overall perturbation effects by counting the total number of DE genes predicted
for each perturbation. State accurately ranked perturbations by their relative effect sizes,
achieving Spearman correlations 53% higher on Parse-PBMC and 22% higher than baselines
on Replogle-Nadig, and 70% higher on Tahoe-100M approaching an absolute correlation
of 0.8 (Fig. 2J). Looking at the trend across individual perturbations, we observe that
State can predict perturbation effects across both datasets with large effect sizes (i.e. drug
perturbations in Tahoe-100M) as well as those with subtler magnitude of effects, such as
the genetic perturbation dataset Replogle-Nadig (Fig. 2K). These results suggest that even
when the specific genes predicted to be differentially expressed after genetic perturbation
do not always match those observed experimentally (Fig. 2I), State can still accurately
estimate the overall size of the DE gene set. Moreover, because the set of experimentally
observed DE genes may be influenced by experiment-specific factors, and because overlap-
based metrics can be overly stringent for perturbations with subtle effects, the size of the DE
gene set offers a more robust and complementary indicator of model performance in genetic
perturbation experiments, even though it is less directly interpretable.

Finally, to evaluate generalization under a more challenging data split, we assessed per-
formance on a held-out tissue. In this setting, State was trained on data from all tissues
except one, and evaluated on the held-out tissue. Across multiple metrics, State consistently
outperformed the perturbation mean baseline (Fig. S6).

While State consistently outperformed all baseline models across datasets with few ex-
ceptions, the performance gains over mean baselines were notably larger on Tahoe-100M,
which includes 100 million cells spanning thousands of perturbations across dozens of base-
line cellular contexts, and Parse-PBMC, which includes 10 million cells across 12 donors
and 18 cell types, as compared to the genome-scale genetic perturbation datasets conducted
in just a few cell lines. This highlights State’s ability to leverage data scale and context
diversity more effectively than existing models, which do not display proportionate gains
in performance despite more data. Moreover, even in the case of the genetic perturbation
dataset, where some baselines showed occasional benefit over State on certain metrics (Lin-
ear model outperformed on DE overlap by 20% and the context mean baseline outperformed
on fold change prediction by 12%), these models were unable to consistently outperform
across multiple metrics. In contrast, State demonstrated the most consistent performance
overall.

2.3. State embeddings enhance zero-shot perturbation prediction
across contexts

One of the goals in developing virtual models of cell state is to create general-purpose pre-
dictive models that can be applied to new contexts, even in the absence of perturbation data
for those contexts (Bunne et al., 2024a). These models should also be able to learn cell regu-
latory information from one dataset and transfer it effectively to other datasets regardless of
perturbation modality, such as chemical or genetic interventions. However, gene expression
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Figure 3: State embeddings enhance zero-shot perturbation effect prediction across
datasets, experiments, and modalities. (A) The State Embedding model (SE) learns rich,
generalizable representations of transcriptomic information across diverse datasets. Given a control
(unperturbed) cell population, SE computes cell embeddings. ST then predicts how those embed-
dings shift in response to a specified perturbation, effectively modeling the distributional effect of
the perturbation in latent space. Finally, a learnt decoder maps the predicted embeddings back into
gene expression space. (Continued on next page)
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Figure 3 (Continued): (B) Understanding the impact of a shared latent space across datasets
for modeling perturbation effects across diverse cell contexts and perturbations. (C) Embedding
quality is evaluated using both intrinsic and extrinsic metrics: intrinsic performance reflects classifi-
cation accuracy of perturbed cells in the embedding generated using observed data; extrinsic perfor-
mance measures the classification accuracy over perturbed embeddings predicted by ST trained on
the cell embeddings. (D) Over two held-out perturbation datasets, using the intrinsic and extrinsic
metrics, we evaluate State embeddings against cell embeddings generated by scFoundation (Hao
et al., 2024), scGPT (Cui et al., 2024), Universal Cell Embedding (UCE) (Rosen et al., 2023), and
Transcriptformer (TF) (Pearce et al., 2025). State embeddings consistently outperform comparable
model embeddings, even passing the performance achieved using the original expression counts. (E)
State embeddings enhance prediction of perturbation effects zero-shot, e.g. in novel cell contexts
not seen perturbed at the time of training. (F) ST with State embeddings is pretrained using
Tahoe-100M and fine-tuned using a query dataset consisting of one or more contexts, of which
one is held out for zero-shot testing. ST is evaluated without any training using perturbations in
the held-out cell context (Section 4.2.2). (G) Zero-shot performance in ranking perturbations
by overall effect size in previously unseen cell contexts over 5 query datasets. (H) Zooming into
Parse-PBMC, State embeddings also improve performance over other metrics from Cell-Eval.
More datasets are shown in Figure S7.

counts are subject to context-specific variability (e.g., sequencing depth and experimental
platform), and do not always generalize well across studies.

To address this, we developed a unified cell representation that can be shared across
datasets and experiments, enhancing perturbation prediction capabilities in previously un-
perturbed cellular contexts. The State Embedding model (SE) complements ST by learning
cell embeddings that are optimized to capture cell-type specific gene expression patterns
(Fig. 3A). When used with ST, the embedding enables a smoother landscape over cell
states, learned using a vast repository of observational single-cell data (Program et al., 2025;
Zhang et al., 2025; Youngblut et al., 2025). SE enables us to indirectly leverage observa-
tional single-cell data to improve perturbation response predictions, especially in cases where
interventional data for a particular context is scarce or noisy.

Architecturally, the SE encoder is a dense, bidirectional transformer trained to predict
log-normalized gene expression (Section 4.4). The SE decoder is a smaller, specialized
MLP that predicts gene expression from a combination of the learned cell embedding and the
target gene embedding (Fig. S2B). This architectural asymmetry encourages the learning
of generalizable representations of cell state in a single vector embedding. SE is trained
with a loss computed along two axes: it predicts expression across genes within each cell,
and for each gene across cells in each minibatch. This dual-axis formulation encourages the
model to capture relative variation in gene expression both within individual cells and across
the population (Lal et al., 2024; Ding et al., 2025; Fischer et al., 2024). The loss enhances
the model’s sensitivity to perturbation effects by preserving the inter-cellular variability
necessary for accurate differential expression modeling.

By learning a general-purpose embedding that captures subtle cell-to-cell variation, SE
addresses a core challenge in perturbation modeling: defining a transferable feature space
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across single-cell datasets (Fig. 3B). When SE and ST are used together, ST learns to
predict perturbed cell embeddings, while simultaneously learning to decode those predicted
embeddings to log expression space (Fig. S2B). To assess the quality of the embeddings pro-
duced by SE, we evaluated their ability to distinguish between perturbations. We measured
intrinsic quality by testing how well the embeddings of observed cells cluster by perturba-
tion label, and extrinsic quality by examining how well the predicted embeddings from ST
preserve this separation (Fig. 3C). We compared SE against using gene expression counts
directly, as well as cell embeddings generated by scFoundation (Hao et al., 2024), scGPT
(Cui et al., 2024), Universal Cell Embedding (UCE) (Rosen et al., 2023), and Transcript-
former (TF) (Pearce et al., 2025) across two held-out perturbation datasets not seen during
SE training (Srivatsan et al., 2020; Replogle et al., 2022). To measure separability, we train
a simple linear probe on the embeddings to predict the perturbation label called for that
cell. State embeddings more effectively separated between perturbation phenotypes com-
pared to all other foundation models and the original expression counts, surpassing even
the performance achieved using the original data representation (Fig. 3D). This suggests
that SE is, in some cases, capable of denoising Perturb-seq data. In the extrinsic evaluation,
State embeddings also led to over a 6% absolute improvement in downstream perturbation
classification accuracy compared to all baselines.

Projecting gene expression into a shared latent space also enables zero-shot identification
of strong perturbation effects in new cell contexts (i.e., without explicit training in the new
cell context) (Fig. 3E). We assessed the robustness of embeddings from SE by pretraining
State (ST+SE) on Tahoe-100M and fine-tuning the model on smaller datasets with new
cell contexts, which we denote as query datasets (Fig. 3F). To evaluate the model, we held
out one cell context at a time from the query datasets, thus focusing on zero-shot context-
level generalization within a dataset rather than zero-shot dataset transfer. In predicting
perturbation effects for previously unperturbed contexts, State trained with the State em-
bedding (ST+SE) consistently ranked perturbation by their effect sizes more accurately than
both the perturbation mean baseline and State models trained directly on gene expression
(ST+HVG). This evaluation was performed using five datasets - which included two ge-
netic perturbation datasets (Jiang et al., 2025; McFaline-Figueroa et al., 2024) and a drug
perturbation dataset (Srivatsan et al., 2020) in addition to datasets used for the previous
analyses, producing a total of 2,102 perturbations (Fig. 3G) across 5 datasets and 40 cell
contexts. For larger datasets like Parse-PBMC and Replogle-Nadig, using the State embed-
ding achieved more than 17% improvement with an absolute Spearman correlation greater
than 0.5. In smaller genetic perturbation datasets (e.g., McFaline et al. and Jiang et al.),
where baseline performance was near zero, embeddings yielded several-fold improvements.

Dataset-specific processing and quality differences also affected other metrics. Notably,
in datasets with strong perturbation effects, zero-shot improvements of using SE were con-
sistent. For example, on the Parse-PBMC dataset, we saw an average of 15% improvement
across all five metrics described in Section 2.2 (Fig. 3H). When excluding cases where
baseline HVG performance was below 10% (indicating noisy data), the fine-tuning improve-
ments remained largely consistent across all 5 datasets tested (Fig. S7). These results show
SE’s capacity for transferring learning across datasets where technical variation can confound
the biological signal driven by perturbation. ST+SE model performance also consistently
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benefited from pre-training even for datasets without drug-based perturbations (e.g. genetic
or signaling perturbations), highlighting the successful transfer of cell regulatory information
across perturbation modalities (Fig. S8).

2.4. State can detect cell type-specific response to perturbations

To illustrate a practical application of State, we evaluated its ability to detect cell type-
specific differential expression (Fig. 4A). This analysis focused on five held-out cell lines
from the Tahoe-100M dataset (Fig. 4A). We identified perturbations with strong cell type
specificity by comparing the overlap of DE genes and the Spearman correlation of log fold
changes between State’s predictions and two baselines: the context mean and the perturba-
tion mean. Improved performance relative to the perturbation mean baseline suggests that
State learns perturbation effects that are specific to a given cell type. Similarly, gains over
the context mean baseline indicate that the model can distinguish between different pertur-
bations within the same cell line and is not trivially predicting the average expression for
each cell line. Across perturbations, State consistently displayed superior ability to recover
the true ranking of log fold changes for differentially expressed genes, outperforming both
the context mean and perturbation mean baselines (Fig. 4B, C).

To explore the biological relevance of a State-generated prediction, we ranked pertur-
bations by how far they improved performance over the mean baselines, suggesting enhanced
sensitivity to context-specific effects. Out of the top two perturbations from over 700 possi-
ble choices, one was an FDA-approved drug for BRAF-mutant melanoma and certain other
tumors, Trametinib (Lugowska et al., 2015). We chose this perturbation (specifically, 0.5 µM
Trametinib) since one of the five test cell lines, C32, is a melanoma line known to have the
overactive BRAF mutation V600E (Banach et al., 2021). The model was not trained on C32
cells treated with any dosage of Trametinib. Both the predicted significance values for DE
genes in C32 following perturbation with Trametinib (Fig. 4D) and the log fold changes for
the true DE genes (Fig. 4E) showed much stronger alignment with ground truth for State
relative to mean baselines. Notably, context and perturbation mean baselines exhibited little
to no correlation with ground truth DE gene significance due to assigning extremely high lev-
els of significance to the vast majority of genes. This inability to distinguish signal from noise
underscores the limitations of simple averaging approaches, and highlights State’s advan-
tage in capturing cell type-specific responses through its modeling of fine-grained cell-to-cell
heterogeneity.

To further explore the cell-line specificity of perturbation response prediction, we com-
pared State predictions to perturbation and context mean baselines for all five cell held-out
cell lines. For each cell line, we identified the top 100 significantly differentially expressed
(DE) genes based on absolute log fold change in the ground truth, and compared them to
the top 100 predicted by State, using its own predicted significance values and log fold
changes as thresholds (Fig. 4F). In every case, State correctly recovered over 30% of the
top DE genes, while both baseline methods identified fewer than 7%. On average, State
correctly identified ∼ 20 additional cell line-specific DE genes relative to the baselines. This
performance gap is particularly striking given that the top 100 genes were largely distinct
across cell lines, with only an average of 16 DE genes shared within the top 100 across any
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Figure 4: State detects cell type-specific gene expression modulations in response
to perturbation. (A) Application of State for identifying perturbations with cell type-specific
effects. (B) DE Gene Overlap between predicted and observed perturbation effects. (C) Spearman
correlation between predicted versus observed log fold changes for differentially expressed (DE). For
(B) and (C) Left: comparison between State and the context mean baseline. Right: comparison
with the perturbation mean baseline. A specific held-out perturbation (Trametinib, 0.05 µM) shows
substantially higher correlation for State relative to both baselines, indicating detection of pertur-
bation effects that are both cell type specific but also not trivially predicted by the cell type mean.
(D) Predicted versus observed significance values for DE genes following Trametinib (0.05 µM)
perturbation, across the top 2,000 highly variable genes. State (blue) shows closer alignment with
ground truth than baselines (yellow). (Continued on next page)
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Figure 4 (Continued): (E) Log fold changes for observed significant DE genes following Tram-
etinib (0.05 µM) perturbation, comparing predictions from State (blue) and baselines (yellow).
(F) Detection of cell type-specific DE genes across 5 cell lines following Trametinib (0.05 µM) per-
turbation. The top row for each cell line corresponds to the top 100 genes with the highest log
fold change. Lower rows show the same set as predicted by State and baseline models. For each
model, we also report the overlap in predicted DEGs and true DEGs computed with the observed
data (G) Perturbation similarity heatmap for drug-induced differential expression across all held
out cell lines. Each perturbation (row or column) corresponds to a specific drug-concentration pair.
Heatmap computed using experimentally measured data, State predictions and perturbation mean
baseline. Similarity of heatmaps to clustering in the measured data compared using Adjusted Rand
Index. (H) State outperforms baselines at predicting cell survival.

pair of cell lines. Notably, in cases where genes were shared, State was also able to recover
these shared effects, further supporting its ability to capture both unique and conserved
perturbation responses across diverse cellular contexts.

To evaluate whether State broadly captures patterns of perturbation similarity, we
compared the drug-induced perturbation effects across all drugs in this dataset in different
contexts. For each held-out drug-concentration pair, we used the log2-fold changes in gene
expression across cell lines as a fingerprint of that perturbation’s effect. We then computed
pairwise similarities between these fingerprints to construct a perturbation similarity map
(Fig. 4G). Comparing these predicted similarities to ground truth revealed a clear improve-
ment for State over baseline models, achieving an Adjusted Rand Index (ARI) of over 0.7,
compared to less than 0.1 for the perturbation mean baseline (Fig. 4G).

Moving beyond transcriptomic responses, we next assessed whether State could capture
actual phenotypic outcomes. We trained a regression model to predict cell survival based
on State-predicted gene expression profiles. The model was trained on real gene expression
data across 10 folds while holding out 15% of the perturbations in each fold. Predicted
survival values were strongly correlated with experimentally measured survival, achieving
an average Pearson correlation of 0.52. In contrast, predictions based on the context mean
baseline showed a low correlation of 0.2, while the perturbation mean baseline achieved a
modest correlation of 0.31 (Fig. 4H).

While this is just one example of a potential use case for State, it shows the potential
for future iterations of the model (or similar models) to provide guidance on the outcome of a
particular treatment on a cell type that has not been previously tested with that treatment.
This could have important implications for repurposing existing drugs, predicting patient-
specific treatment response or understanding potential adverse reactions in cell types beyond
the intended drug target.

3. Discussion
High-throughput cellular perturbation experiments, combined with recent advances in arti-
ficial intelligence, have opened exciting new avenues for developing computational models of
cell state and behavior. Just as foundation models at the molecular scale have succeeded
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in predicting biological traits such as molecular structure and function (Brixi et al., 2025;
Nguyen et al., 2024; Hayes et al., 2025; Lin et al., 2023), models at the cellular scale hold
promise for uncovering mechanisms underlying disease progression and advancing the discov-
ery of more precise treatments. However, translating these successes to the cellular level has
proven substantially more challenging. Single-cell foundation models have yet to achieve the
same level of predictive accuracy or generalizability, largely due to the inherent complexity of
cells as dynamic, context-dependent systems. Unlike the relatively static and homogeneous
nature of individual DNA, RNA, or protein molecules, cellular systems exhibit substantial
heterogeneity and are deeply influenced by environmental and temporal factors. Two central
challenges for modeling cellular systems are the intrinsic heterogeneity of cell populations
undergoing perturbation which cannot be fully resolved using known covariates, and the
variability introduced across different experiments and datasets.

Our model, State, presents a scalable approach for learning a foundation model of cell
state and behavior across diverse cellular contexts and experimental conditions. The State
Transition model (ST) uniquely learns perturbation effects across cell populations while still
maintaining single-cell resolution in its predictions, thereby capturing residual heterogeneity
not explained by known experimental or biological covariates. While past work has tackled
heterogeneity in single-cell data by modeling cells as groups (Persad et al., 2023; Boyeau et al.,
2022; Dann et al., 2022), State uniquely leverages a permutation-invariant transformer
architecture (Lee et al., 2019; Zaheer et al., 2017) to directly model perturbation effects
across unpaired distributions of cells. This frees State from predefined assumptions on
distributional structure, unlike approaches based on optimal transport (Bunne et al., 2023;
Chen et al., 2024; Demir et al., 2024; Dong et al., 2023). Moreover, our theoretical findings
establish that, in the asymptotic limit and under mild regularity conditions, the unique
continuous OT map (defined by a fixed quadratic cost) linking unperturbed and perturbed
cell populations is provably contained within our model’s solution space (Theorem 2). This
means State may learn the OT map when necessary, without explicitly constraining itself to
a rigid, predefined OT formulation or requiring specialized architectural components typically
associated with explicit OT solvers. Furthermore, by introducing explicit Jacobian-based
constraints, we show that State can uniquely identify and learn this continuous optimal
transport map (Theorem 3), positioning it as a powerful, theoretically grounded Neural OT
solver.

The central goal for State is to reliably simulate single-cell perturbational experiments
across diverse cell contexts. We used this objective to guide the design of a comprehensive
model evaluation suite, Cell-Eval, focusing on performance along three key dimensions:
gene expression counts, differential expression, perturbation effect sizes. To our knowledge,
State is the first machine learning model to consistently outperform simple baselines such
as the mean or linear models on the cell context generalization task, across almost all metrics
and on multiple datasets. Moreover, the inclusion of embeddings from our cell embedding
model, SE, enables more effective zero-shot perturbation effect prediction in novel cell con-
texts, a core goal for developing truly generalizable virtual cells. While State shows strong
zero-shot performance when predicting perturbation effect sizes, metrics that reflect subtler
changes, such as the accuracy of individual DE genes, are more sensitive to dataset size and
quality. With the growth of large-scale perturbational atlases (Rood et al., 2024; Huang
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et al., 2025a; Zhang et al., 2025; Rood et al., 2025), we expect performance on these sub-
tler metrics to improve, and State is well-positioned to leverage these datasets given its
improved robustness to cellular and data variability. Furthermore, we have found that ST
attention maps demonstrate sensitivity to cell set heterogeneity, highlighting interpretability
as a promising avenue for further understanding gene regulatory mechanisms using State
(Section 6).

When applied to previously seen contexts, we have found State’s predictions are biologi-
cally meaningful, accurately capturing context-specific perturbation effects, such as cell-type
specific DE genes. Predicted post-perturbation profiles were also found to capture non-
transcriptional cellular phenotypes such as cell survival. These capabilities position State
as a step towards realizing the broader vision of a virtual cell–a model capable of explor-
ing the space of possible cell states (Bunne et al., 2024a; Noutahi et al., 2025) and guiding
autonomous systems, such as AI agents, for experimental design (Roohani et al., 2024b;
Huang et al., 2025b; Rizvi et al., 2025; Wu et al., 2025). State contributes to this vision
by advancing the state-of-the-art in perturbation-response modeling and by introducing an
architecture that can meaningfully leverage the growing size and diversity of single-cell per-
turbation datasets. Its flexible transformer architecture can support a range of tasks that
involve modeling transitions between distinct populations such as differentiation, develop-
ment, and reprogramming. State is also agnostic to the choice of cell representation, which
enables seamless extension to additional data modalities, including proteomics and morpho-
logical measurements, as well as literature-based knowledge. By incorporating mechanisms
for perturbation featurization withing State, we expect to further lower the barriers between
different modalities such as drugs and gene knockdowns, while also opening the door to com-
binatorial perturbation prediction. Although State has been trained and evaluated on over
70 cell contexts, we have not tested its usability on entirely held-out datasets for which no
cell contexts have been seen during training. Further improvements in SE through training
on larger datasets, such as scBaseCount (Youngblut et al., 2025), will be instrumental in
generalizing predictions across such diverse settings.
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4. Methods
4.1. Data Generation Process

We assume that the observed log-normalized perturbed expression state of each cell, Xp,
is a random variable generated from an unobservable unperturbed state, X0, which itself is
a random variable representing the cell’s underlying expression state. X0 is drawn from a
basal cell distribution Dbasal for a given set of covariates (e.g., cell line, batch condition, etc),
and the perturbation effect can be modeled as follows:

Xp = X0 + Tp(X0) + ε, X0 ∼ Dbasal (2)

where

• Tp(X0): True effect caused by perturbation p.
• ε: Experiment-specific technical noise, assumed independent of X0.

As single-cell transcriptomic measurements destroy the cell, X0 is unobservable, so directly
modeling Eq. 2 is not feasible. Instead, our method operates on the observable Dbasal to
predict the perturbed state, denoted as X̂p. This forms the basis of our model:

X̂p ∼ T̂p(Dbasal) + H(Dbasal) + ε, ε ∼ Pε

Xp
d≈ X̂p

(3)

In this approximation, the true effect of the perturbation Tp(X0) is now considered in the
context of the entire basal population, denoted as T̂p(Dbasal). Additionally, we explicitly
introduce H(Dbasal) to represent the biological heterogeneity inherent in the baseline pop-
ulation. This heterogeneity was implicitly removed when sampling X0 ∼ Dbasal in the first
equation but is made explicit here to reflect our shift to a distributional view. X̂p can be
seen as a distributional analogue of Xp, allowing us to model the perturbed state based on
observable population characteristics rather than unobservable individual cell states.

Fig. 1A illustrates these assumptions. State is designed to reflect the assumptions of
this data generation process: it directly models T̂p(Dbasal) +H(Dbasal) with State Transition
(ST) and accounts for ε with State Embedding (SE).

4.2. Task Description

We now describe the core prediction tasks used for evaluation.

4.2.1. Underrepresented Context Generalization Task

To evaluate the generalization capabilities of perturbation models, we first test the gener-
alization of perturbation effects within Perturb-Seq datasets (Fig. 2). Given the dataset
of interest, let the collection of biological contexts (cell types or cell lines in some dataset)
be C and the perturbation catalogue be P . For every context c ∈ C, we write Pc ⊆ P for
the subset of perturbations that were profiled in that context, and we denote by Xp,c ∈ Rd

the gene–expression vector generated for the pair (p, c) according to Eq. 2. To test the
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generalization capabilities of the model in an underrepresented context, we fix a test context
c∗ ∈ C. We then choose a proportion α = 0.30 and draw a support set

Psup
c∗ ⊂ Pc∗ , |Psup

c∗ | =
⌊
α |Pc∗ |

⌋
, (4)

uniformly at random. The remaining perturbations form the target perturbation set Ptarget
c∗ =

Pc∗ \ Psup
c∗ . The training and test splits are then given as follows:

Dtrain =
{
(Xp,c, p, c) : c ∈ C \ {c∗}, p ∈ Pc

}
∪

{
(Xp,c∗ , p, c∗) : p ∈ Psup

c∗

}
, (5)

Dtest =
{
(Xp,c∗ , p, c∗) : p ∈ Ptarget

c∗

}
. (6)

Thus, the model sees all perturbations in C \ {c∗} and only 30% of the perturbations in the
test context c∗. If |C| is large, a diverse fixed subset Ctest ⊂ C of n contexts is designated as
test contexts. We form Dtrain from the C \ Ctest contexts, as well as 30% of the perturbations
from each cj ∈ Ctest. We then construct multiple Dtest, one from each cj ∈ Ctest, each
containing the remaining unseen perturbations from cj. If |C| is small, we iteratively leave
out a single context c∗ = cj, form Dtrain with the remaining C \ {cj} contexts as well as 30%
of the perturbations from cj and Dtest from the remaining unseen perturbations from cj.
This iteration creates multiple training sets, allowing to report performance over separately
trained models. In both cases, we report the mean loss across Dtest, yielding a robust estimate
of the model’s ability to extrapolate to unseen perturbations within an underrepresented
context. Unperturbed cells from all contexts including the underrepresented context are
available to the model during training.

4.2.2. Zero-Shot Context Generalization Task

Next, we evaluate the ability to generalize perturbation effects in a zero-shot manner across
biological contexts (Fig. 3F). To enhance performance on this task, we include a pre-training
step. Each model is initially pre-trained on one or more large perturbation datasets (e.g.,
Tahoe-100M) and subsequently fine-tuned to a different dataset, referred to as the query
dataset, via full fine-tuning. The model is then tested on a held-out context within the
query dataset.

Specifically, the model is first pre-trained on one or more datasets that include perturba-
tions across multiple contexts. Then, given a query dataset, we hold out one context and use
the remaining contexts for fine-tuning. The contexts used for fine-tuning contain a superset
of the perturbations found in the held-out context. The fine-tuned model is evaluated on its
ability to predict the effects of those perturbations within the held-out context of the query
dataset. Formally, the fine-tuning process involves partitioning the set of contexts in the
query dataset into Cfine-tune ⊂ C and Ctest ⊂ C with Cfine-tune ∩ Ctest = ∅. The data used in the
fine-tuning phase

Dfine-tune =
{

(Xp,c, p, c) : c ∈ Cfine-tune, p ∈ P
}

(7)

contain all perturbations in Cfine-tune. After fine-tuning fθ on Dfine-tune, we evaluate it on the
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same perturbations p ∈ P but in unseen, held-out cell lines c ∈ Ctest. Thus, the test set is

Dtest =
{

(Xp,c, p, c) : c ∈ Ctest, p ∈ P
}
. (8)

This task directly assesses whether the model has learned generalizable relationships between
biological context and perturbation response. Unperturbed cells from all contexts including
the held out context are available to the model during training.

4.3. State Transition Model (ST)

ST is a deep learning model that learns the transcriptomic responses to perturbations across
populations of cells. The model uses a transformer architecture with self-attention across
cells to predict perturbation effects between control and perturbed cell distributions. Let

D =
{(

x(i), pi, ℓi, bi

)}N

i=1
, x(i) ∈ RG. (9)

denote a dataset of single–cell RNA-sequencing measurements over the gene set, with G
the number of genes. Here, x(i) represents the normalized expression vector for cell i, after
its raw count values have been processed. Specifically, the raw count value observed for
gene j in cell i after perturbation pi (if any) is initially x(i),raw

j ∈ N0. These raw counts are
depth-normalized and log-transformed using Scanpy(normalize_total → log1p), yielding
non-negative, real-valued expression vectors x(i). Each cell is annotated with perturbation
label pi ∈ {1, . . . , P} ∪ {ctrl}, a biological context or cell line label ℓi ∈ {1, . . . , L}, and an
optional batch effect label bi ∈ {1, . . . , B}.

4.3.1. Formation of Cell Sets

We group cells into sets based on their biological context, perturbation, and batch labels:

Cℓ,p,b =
{

x(i) ∈ D
∣∣∣ ℓi = ℓ, pi = p, bi = b

}
. (10)

Let Nℓ,p,b =
∣∣∣Cℓ,p,b

∣∣∣ denote the number of cells in each group. Given a target set size S,
we partition Cℓ,p,b into non-overlapping subsets of size S to construct a collection of tensors
S(k)

ℓ,p,b ∈ RS×G, where k ∈
{
1, . . . ,

⌊
Nℓ,p,b

S

⌋}
. If Nℓ,p,b is not divisible by S, the remaining

cells form a final, smaller set, which is padded to size S by sampling additional cells with
replacement from itself.

4.3.2. Training on Cell Sets

During training, each set S(k)
ℓ,p,b, where p ∈ {1, . . . , P}∪{ctrl}, is paired with a corresponding

control set. The control set is constructed by randomly sampling S control cells from the
same cell line ℓ, and optionally same batch b. Formally, for each training example S(k)

ℓ,p,b, we
construct a paired control set via a map operation:

map(S(k)
ℓ,p,b) = stack([x(i)]x(i)∼Cℓ,ctrl,b

) ∈ RS×G (11)
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This mapping is applied uniformly, regardless of whether S(k)
ℓ,p,b contains perturbed or con-

trol cells. The choice of map function effectively determines which sources of variation are
explicitly controlled for. By conditioning on specific covariates (e.g., cell line ℓ, batch b),
the mapping function reduces known sources of heterogeneity that could otherwise con-
found true perturbation signals. Different mapping strategies introduce different priors on
non-perturbational variation. For instance, sampling control cells from the same batch can
reduce technical variation but limit the number of unique cells per set, which may limit
model performance.

To construct mini-batches, we collect B such set pairs, {(S(ki)
ℓi,pi,bi

, map(S(ki)
ℓi,pi,bi

))}i=1,...B,
where different pairs may originate from a different combination of cell line, perturbation,
and (optionally) batch. These are then arranged into the following tensors:

Xtarget = stack([S(k1)
ℓ1,p1,b1 , . . . ,S

(kB)
ℓB ,pB ,bB

]) ∈ RB×S×G

Xctrl = stack([map(S(k1)
ℓ1,p1,b1), . . . , map(S(kB)

ℓB ,pB ,bB
)]) ∈ RB×S×G

Zpert ∈ RB×S×Dpert (perturbation embeddings)
Zbatch ∈ RB×S×Dbatch (optional batch covariates)

(12)

where Dpert and Dbatch denote the dimensionalities of the perturbation and batch embed-
dings, respectively. For State, we use one-hot encodings of perturbation and batch, so Dpert

equals the number of unique perturbations across the data, and Dbatch equals the number of
unique batch labels. ST takes Xctrl as input along with the perturbation embeddings Zpert

and learns to predict Xtarget as output, learning to transform control cell populations into
their corresponding perturbed states.

4.3.3. Neural Network Modules

ST uses specialized encoders that map cellular expression profiles, perturbation labels, and
optionally batch labels into a shared hidden dimension dh, which serves as the input to the
transformer.

Control Cell Encoder. Each log-normalized expression vector x(i) ∈ RG is mapped to
an embedding via a 4-layer MLP with GELU activations. The MLP fcell is applied to each
cell independently across the entire control tensor:

Hcell = fcell(Xctrl) ∈ RB×S×dh (13)

This transforms the input shape from (B × S ×G) → (B × S × dh).

Perturbation Encoder. Perturbation labels are encoded into the same embedding di-
mension dh. For one-hot encoded perturbations, the input vector is passed through a 4-layer
MLP with GELU activations:

Hpert = fpert(Zpert) ∈ RB×S×dh (14)
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This transforms the input shape (B × S × Dpert) → (B × S × dh) (note the perturbation
embedding is the same for all cells within the same set of a given batch). Alternatively,
when perturbations are represented by continuous features (e.g., molecular descriptors or
gene embeddings), the embeddings are directly used in Hpert and we set dh = Dpert.

Batch Encoder. To account for technical batch effects, batch labels bi ∈ {1, . . . , B} are
encoded into embeddings of dimension dh:

Hbatch = fbatch(Zbatch) ∈ RB×S×dh (15)

where fbatch is an embedding layer. This transforms the input shape from (B×S×Dbatch) →
(B × S × dh).

Transformer Inputs and Outputs. The final input to ST is constructed by summing
the control cell embeddings with the perturbation and batch embeddings:

H = Hcell + Hpert + Hbatch (16)

This composite representation is passed to the transformer backbone fST to model pertur-
bation effects across the cell set. The output is computed as:

O = H + fST(H) (17)

where O ∈ RB×S×dh represents the final output. This formulation encourages the transformer
fST to learn perturbation effects as residuals to the input representation H.

Gene Reconstruction Head. When working with inputs directly in expression space,
the gene reconstruction head maps the output of the transformer, O, back to gene expres-
sion space. This is done with a linear projection layer, applied independently to the dh-
dimensional hidden representation of each token within each cell set. Specifically, for each
cell b in the batch, where O(b) ∈ RS×dh is the transformer output for cell b, the reconstructed
gene expression X̂(b)

target ∈ RS×G is given by:

X̂(b)
target = frecon(O(b)) = O(b)Wrecon + brecon (18)

where Wrecon ∈ Rdh×G and brecon ∈ RG are learnable parameters. This operation transforms
the hidden representations, yielding reconstructed log-transformed gene expression values
for each cell in the batch.

4.3.4. Learning Perturbation Effects with Maximum Mean Discrepancy

ST is trained to minimize the discrepancy between predicted (X̂target) and observed (Xtarget)
transcriptomic responses. This is quantified using the Maximum Mean Discrepancy (MMD)
(Gretton et al., 2012), a statistical measure of distance between two probability distributions
based on their embeddings in a Reproducing Kernel Hilbert Space (RKHS), via a kernel
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function of choice. MMD has been applied previously to model single-cell perturbation
effects (Zhang et al., 2023).

For each mini-batch element b, we consider the set of S predicted cell expression vectors
of cells within the batch (therefore those sharing the same combination of cell line ℓ and
perturbation p, as described in Eq. 12). With a slight abuse of notation, we denote this
set as X̂(b)

target = {x̂(i) ∈ RG such that i ∈ b}S
i=1, and the corresponding set of S target cell

expression vectors of cells within the batch as X(b)
target = {x(i) ∈ RG such that i ∈ b}S

i=1. The
MMD is then used to minimize the distance between the empirical probability distributions
implicitly defined by these two finite sets of vectors.

The squared MMD between the predicted and observed cell sets is computed as:

MMD2
(
X̂(b)

target,X
(b)
target

)
= 1
S2

S∑
i=1

S∑
j=1

[
k(x̂(i), x̂(j)) + k(x(i),x(j)) − 2k(x̂(i),x(j))

]
(19)

where k(·, ·) denotes the kernel function. The three terms correspond to: (1) similarity
within the predicted set, (2) similarity within the observed set, and (3) cross-similarity
between predicted and observed sets.

We use the energy distance kernel:

k(u,v) = −∥u − v∥2,

implemented via the geomloss library (Feydy et al., 2019).

For notational convenience, for a training minibatch of B cell sets, we define the batch-
averaged MMD loss as the average of these MMD2 values:

LMMD(X̂target,Xtarget) = 1
B

B∑
b=1

MMD2
(
X̂(b)

target,X
(b)
target

)
. (20)

Minimizing this loss encourages the model to generate sets of perturbed cell expression
vectors whose overall statistical properties, as captured by the MMD, consistent with per-
turbation labels and match those of the observed cell sets. The total loss is:

Ltotal = LMMD(X̂target,Xtarget). (21)

4.3.5. Training ST in Embedding Spaces

ST offers the flexibility to be trained either directly in gene expression space or in a specified
embedding space. When trained directly in gene expression space, ST operates on the top
2,000 highly variable genes (HVGs) as identified in our preprocessing. In this mode, the
model is referred to as ST+HVG in our results. To enable training in an embedding space,
the architecture is modified to include an additional expression decoder. Formally, let E
denote the dimensionality of the embedding space, where typically E ≪ G. The tensors
Xtarget and Xctrl, now denoted as Xemb

target and Xemb
ctrl , are of dimension B×S×E. Accordingly,

fcell is modified to transform the input shape from (B × S × E) → (B × S × dh), and frecon
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is modified to transform the output shape from (B × S × dh) → (B × S × E). This output
is denoted as X̂emb

target. The other encoders and the transformer itself remain unchanged.

To recover the original gene expression of the target cells, Xtarget, we train an additional
decoder head fdecode. This is a multi-layer MLP with dropout that maps from the embedding
space back to the full gene expression space:

X̂target = fdecode(X̂emb
target) (22)

This transforms the predicted embeddings from (B × S ×E) → (B × S ×G) to recover
gene expression profiles.

The ST loss is hence modified to make use of the two target sets: Xemb
target ∈ RB×S×E con-

taining the target embeddings, and Xtarget ∈ RB×S×G containing the target gene expression
profiles. Specifically, the model is trained using a weighted combination of MMD losses in
the embedding and gene expression spaces:

Ltotal = LMMD(X̂emb
target,Xemb

target) + 0.1 · LMMD(X̂target,Xtarget)

The expression loss is down-weighted by a factor of 0.1 to balance the two terms and avoid
overwhelming the primary objective in embedding space. This encourages the model to
learn perturbation effects primarily in the embedding space while simultaneously decoding
to expression space. Our experiments demonstrate that the embedding space improves learn-
ing of perturbational effects across datasets, suggesting that the smoother structure of the
embedding space facilitates better modeling of perturbation biology.

4.4. State Embedding Model (SE)

ST motivates the development of high-quality cell embeddings that capture relevant biolog-
ical signal while reducing technical artifacts. For this, we developed the State Embedding
model (SE), a self-supervised model trained with a gene expression prediction objective to
learn cell representations from single-cell RNA sequencing data. The embeddings produced
by SE serve as inputs to ST, enabling more robust transfer across datasets and biological
contexts.

4.4.1. Gene Representation via Protein Language Models

Our dataset (Eq. 9) consists of cell expression measurements x(i), where each entry x(i)
j

represents the normalized expression level of gene j in cell i. Beyond these expression val-
ues, the SE model incorporates rich information about genes themselves through pretrained
protein language model embeddings gj.

Following recent work (Rosen et al., 2023; Pearce et al., 2025), we leverage pretrained
protein language models to encode gene features. Gene embeddings are computed with
ESM-2 (esm2_t48_15B_UR50D (Lin et al., 2023)), first by computing transcript embeddings
by averaging per-amino-acid embeddings for each protein-coding transcript in the gene,
and then by averaging across all the transcripts in the gene. This featurization captures
evolutionary and functional relationships between genes. Genes without Ensembl IDs are
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mapped using the MyGene API (Wu et al., 2013) and Ensembl REST API (Yates et al.,
2015), with manual curation for ambiguous cases. Non-protein-coding genes are excluded
from SE.

Each gene embedding gj ∈ R5120 is projected into the model’s embedding dimension h
via a learnable encoder:

g̃j = SiLU(LayerNorm(gjWg + bg)) (23)

where Wg ∈ R5120×h and bg ∈ Rh are learnable parameters, and SiLU denotes the Sigmoid
Linear Unit activation function (Elfwing et al., 2018).

4.4.2. Cell Representation

We represent each cell i as a sequence of its most highly expressed genes in x(i). For each
cell, we construct an “expression set” by selecting the top L = 2048 genes ranked by log
fold expression level. Empirically, increasing L beyond 2048 yielded diminishing returns in
model performance. The expression set is then augmented with two special tokens:

c̃(i) = [zcls, g̃(i)
1 , g̃(i)

2 , . . . , g̃(i)
L , zds] ∈ R(L+2)×h (24)

where zcls ∈ Rh is a learnable classification token used to aggregate cell-level information,
and zds ∈ Rh is a learnable dataset token that helps disentangle dataset-specific effects. Here,
g̃(i)

ℓ represents the projected embedding of the ℓ-th most highly expressed gene in cell i, with
ℓ ∈ {1 . . . , L}. The gene selection is cell-specific: different cells may have different sets of
highly expressed genes, leading to different gene embeddings in their respective expression
sets. If a cell expresses fewer than L genes, the expression set is padded to length L by
randomly sampling from the pool of unexpressed genes. This maintains a fixed-length input
for transformer processing.

4.4.3. Expression-Aware Embeddings

Although genes in the cell expression set are sorted by expression level, their magnitudes
are not explicitly encoded or used by the model. Instead, SE incorporates expression values
directly using an expression embedding scheme inspired by soft binning (Hao et al., 2024).
For the ℓ-th most expressed gene in cell i’s expression set (which corresponds to gene ID j

(i)
ℓ )

with log-normalized expression value x(i)
j

(i)
ℓ

in cell i, we compute a soft bin assignment:

α
(i)
ℓ = Softmax(MLPcount(x(i)

j
(i)
ℓ

)) ∈ R10 (25)

e(i)
ℓ =

10∑
k=1

α
(i)
ℓ,kbk (26)

where MLPcount : R → R10 consists of two linear layers (dimensions 1 → 512 → 10) with
LeakyReLU activation, and {bk}10

k=1 are learnable bin embeddings of dimension h. The
resulting expression encodings e(i)

ℓ are added to the corresponding gene identity embeddings
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g̃(i)
ℓ :

g(i)
ℓ = g̃(i)

ℓ + e(i)
ℓ (27)

4.4.4. Transformer Encoding

The input expression set, composed of expression-aware gene embeddings and special tokens,
is passed through the transformer encoder fSE:

E(i) = fSE([zcls,g(i)
1 ,g(i)

2 , . . . ,g(i)
L , zds]) ∈ R(L+2)×h (28)

where each g(i)
ℓ , for ℓ ∈ {1, . . . , L} is as in Eq. 27. Note that the expression encodings are

set to zero for the special tokens [CLS] and [DS].

The output is a sequence of contextualized embeddings. The cell embedding is then
extracted from the [CLS] token at position 0 and normalized:

e(i)
cls = LayerNorm(E(i)

0 ) ∈ Rh (29)

This embedding serves as a summary representation of the cell’s transcriptomic state. Sim-
ilarly, we extract the dataset representation from the [DS] token at position L+ 1:

e(i)
ds = LayerNorm(E(i)

L+1) ∈ Rh (30)

This embedding is used to capture and account for dataset-specific effects during training.

The final embedding is the concatenation of these two quantities:

z(i)
cell = [e(i)

cls, fproj(e(i)
ds )] ∈ Rh+10 (31)

where fproj(e(i)
ds ) ∈ R10 is a learned linear projection of the dataset embedding from h → 10.

This cell embedding z(i)
cell serves as the input representation for individual cells in ST, enabling

the multi-scale State architecture to leverage rich cellular representations for population-level
perturbation modeling.

4.4.5. Pretraining Objectives

SE is trained using a self-supervised learning framework with two complementary objectives:
(1) a gene expression prediction task, and (2) an auxiliary dataset classification task that
helps disentangle technical batch effects from biological signal.

Gene Expression Prediction. During training, the model receives the complete input
cell expression set (as described in Eq. 24), and is tasked with predicting expression values
for a selected set of 1,280 genes per cell. To ensure coverage across the expression dynamic
range, the target genes for prediction are drawn from three categories:

• P(i), a set of |P(i)| = 512 highly expressed genes (from the top L genes in the cell
expression set i),
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• N (i), a set of |N (i)| = 512 unexpressed genes (randomly sampled from genes not in the
top L of cell i),

• R a set of |N (i)| = 256 genes randomly sampled from the full gene set, shared for all
cells in the batch.

This results in 1,280 genes for which expression values must be predicted per cell. This
strategy encourages the model to reconstruct expression values across a wide dynamic range
and to learn meaningful representations of both expressed and silent genes, while having
access to the complete transcriptomic context, through self attention, during prediction.

Expression Prediction Decoder. To learn from gene expression prediction across dif-
ferent datasets with varying read depth, we use an MLP decoder that combines multiple
sources of information:

x̂(i)
j = MLPdec([z(i)

cell; g̃j; r(i)]) (32)

where z(i)
cell ∈ Rh+10 is the learned cell embedding (Eq. 31), g̃j ∈ Rh is the embedding of

the target gene (Eq. 23), and r(i) ∈ R is a scalar read depth indicator, computed as the
mean log expression of expressed genes in the input expression set for each cell i. These
are concatenated and passed through MLPdec, which consists of two skip-connected blocks
followed by a linear output layer that predicts the log expression for the target gene j in cell
i.

For each cell i in a training batch, let Ŷ(i) = [x̂(i)
j ]j∈P(i)∪N (i)∪R ∈ R1×1280 denote the

row vector containing the set of predicted expression values for the genes in P(i) ∪ N (i) ∪ R,
and let Y(i) = [x(i)

j ]j∈P(i)∪N (i)∪R ∈ R1×1280 denote the row vector with corresponding true
expression values. The tensors are stacked across cells in the batch: Y = stack([Y(i)]Bi=1)
and Ŷ = stack([Ŷ(i)]Bi=1), with resulting shape (B × 1 × 1280). The gene-level loss is:

Lgene = 1
B

B∑
b=1

∥Ŷ(b) − Y(b)∥2 (33)

and therefore it effectively measures the similarity between predicted and true gene expres-
sion patterns within each cell b (which is then averaged across cells in Lgene).

To capture variation in gene expression across cells in the mini-batch, we also compute
a cell-level loss using the shared subset of genes R. Let Ŝ(i) = stack([x̂(i)

j ]j∈R) ∈ R256 and
S(i) = stack([x(i)

j ]j∈R) ∈ R256 denote the predicted and true expression values in cell i for
the shared genes R. These tensors are stacked across cells in the batch and transposed:
S′ = transpose(stack([S(i)]Bi=1)) and Ŝ′ = transpose(stack([Ŝ(i))]Bi=1), resulting in shape
(|R| × 1 × B), with |R| = 256. We then compute the distance between the concatenated
predictions and targets across all cells in the batch for each gene. Specifically, we consider
the r-th gene (row) of the transposed tensors, denoted as Ŝ′(r) and S′(r) (each being a 1 ×B
vector):

Lcell = 1
|R|

|R|∑
r=1

∥Ŝ′(r) − S′(r)∥2 (34)
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and therefore it effectively measures the similarity between predicted and true gene expres-
sion across cells in the batch for each gene in R (which is then averaged across genes in
Lcell).

The final training loss for expression prediction combines both axes:

Lexpression = λ1 Lgene + λ2 Lcell (35)

This dual-axis reconstruction loss captures both gene-wise reconstruction fidelity within each
cell and the consistency of expression patterns across cells for shared genes.

Dataset Classification Modeling. To disentangle dataset-specific technical effects from
biological variation, we introduce an auxiliary dataset prediction task. Using the [DS] token
embedding, the model predicts the dataset of origin:

d̂(i) = MLPdataset(e(i)
ds ) (36)

with e(i)
ds as in Eq. 30. We employ cross-entropy loss:

Ldataset = 1
B

B∑
b

CrossEntropy(d̂(b), d(b)) (37)

where d(b) denotes the true dataset label for cell b in the batch, and d̂(b) is the predicted
label.

In our implementation, cells within the same AnnData file are treated as originating from
the same dataset for this classification task. For our SE model trained on Arc scBaseCount,
CZ CELLxGENE, and Tahoe-100M, this task becomes a multi-class classification problem
over approximately 14,000 datasets. This auxiliary objective encourages the model to pool
the relevant information in this token position, disentangling it from true biological signal.
Empirically, since datasets in scBaseCount are organized by Sequence Read Archive experi-
ment identifiers (SRX), which typically correspond to individual cell types or experimental
conditions, the dataset token captures cell type and cell line information alongside techni-
cal batch effects. Since this token embedding is derived exclusively from the expression set
representation without incorporating metadata, the trained model can be used at inference
time without requiring explicit specification of technical parameters.

Total Loss. The SE model is trained using a combination of both losses:

L = Lexpression + Ldataset. (38)
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Table 1: Summary of datasets used in ST experiments, including total number of cells,
perturbations, and biological contexts (e.g., donors, cell types, or conditions).

Dataset # of Cells # of Perturbations # of Contexts

Replogle-Nadig 624,158 1,677 4
Jiang 234,845 24 30
Srivatsan 762,795 189 3
Mcfaline-Figueroa 354,758 122 3
Tahoe-100M 100,648,790 1138 50
Parse-PBMC 9,697,974 90 12/18 (Donors)/(Cell Types)

4.5. Datasets

4.5.1. Datasets Used for ST Training

We used several single-cell perturbation datasets in this study: Tahoe-100M dataset (Zhang
et al., 2025), the Replogle-Nadig dataset (Replogle et al., 2022; Nadig et al., 2025), the Parse-
PBMC dataset (Parse Biosciences, 2023), the Jiang dataset (Jiang et al., 2020), the McFaline
dataset (McFaline-Figueroa et al., 2019), and the Srivatsan dataset (Srivatsan et al., 2020)
(Table 1). All datasets were filtered to retain measurements for 19,790 human protein-
coding Ensembl genes and subsequently normalized to a total UMI depth of 10,000. Raw
count data were log-transformed using scanpy.pp.log1p. For analyses on highly variable
genes (HVGs) throughout this work, for each dataset, the top 2,000 HVGs were identified
using scanpy.pp.highly_variable_genes. Log-transformed expression values for these
HVGs were used as gene-level features. PCA embeddings of cells were computed using
scanpy.pp.pca.

4.5.2. Additional preprocessing for genetic perturbation datasets

Genetic perturbation datasets were further filtered to only retain perturbations with high
knockdown efficacy using the filter_on_target_knockdown function from the Cell-Load
package. The following three filtering steps were performed:

• Perturbation-level filtering: Retain only those perturbations (except controls)
whose average knockdown efficiency meets a minimum threshold, residual expression
is ≤ 0.30.

• Cell-level filtering: Within the selected perturbations, keep only those cells that
individually meet a stricter knockdown threshold, residual expression ≤ 0.50.

• Minimum cell count: Drop any perturbations that have fewer than a specified
number of remaining valid cells (30), while always preserving control cells.

4.5.3. Datasets Used for SE Training

SE was trained on 167 million human cells across the Arc scBaseCount (Youngblut et al.,
2025), CZ CELL×GENE (Program et al., 2025), Tahoe-100M (Zhang et al., 2025) datasets
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Table 2: Summary of datasets used in SE experiments, showing total number of cells.

Dataset # Training Cells # Validation Cells

Arc scBaseCount (Youngblut et al., 2025) 71,676,369 4,137,674
CZ CellXGene (Program et al., 2025) 59,233,790 6,500,519
Tahoe-100M (Zhang et al., 2025) 36,157,383 2,780,587

(Table 2). To avoid data leakage in our context generalization benchmarks, we trained on 20
Tahoe-100M cell lines separate from the five held out cell lines from (Fig. 2). scBaseCount
data was filtered to only retain cells with at least 1,000 non-zero expression measurements
and 2,000 UMIs per cell. A subset of AnnData files were left out for computing validation
loss.

4.6. Training

All models are implemented using PyTorch Lightning with distributed data parallel (DDP)
training. We use PyTorch’s automatic mixed precision (AMP) to reduce memory usage and
accelerate training. During inference, genes not present in the embedding vocabulary are
ignored.

4.6.1. ST Hyperparameters

The ST architecture utilizes a shared hidden dimension, denoted as h, across its modules.
Each encoders maps its respective inputs to this h-dimensional space, which also serves
as the internal dimension for the transformer layers. The core transformer module, fST,
is either based on a LLaMA (Touvron et al., 2023) backbone or a GPT2 (Radford et al.,
2019) backbone, provided in HuggingFace. We use a GPT2 backbone for sparser datasets,
such as Replogle-Nadig (Replogle et al., 2022; Nadig et al., 2025), due to LayerNorm’s
desirable centering transform operations that revive dead neurons in low-data regimes (Lyle
et al., 2024). All models are modified to use bi-directional attention. Dimensionality and
parameterization of the backbone used in Fig. 2 are provided in Table 3. Since cell order
within each set is arbitrary, no positional encodings are used. Additionally, dropout is
not applied within the transformer. Additionally, as we work directly in vector space, we
deactivate the model parameters allocated for word embeddings. Before training, most
ST weights are initialized sampling from Kaiming Uniform wij ∼ U

(
−

√
1

fan_in ,
√

1
fan_in

)
(He et al., 2015) with the exception of the transformer backbone which is initialized from
N (0, 0.022). Detailed configurations for each neural network module are summarized in
Table 4.

4.6.2. ST Training Details

All components are trained end-to-end with using the objectives described previously. These
components include the control cell encoder fcell, perturbation encoder fpert, optional batch
encoder fbatch, transformer backbone fST, reconstruction and decoding heads frecon and
fdecode.
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Table 3: Key model hyperparameters by dataset.

Dataset cell_set_size hidden_dim n_encoder_layers n_decoder_layers batch_encoder transformer_backbone_key attn_heads params

Tahoe-100M 256 1488 4 4 false LLaMA 12 244M
Parse-PBMC 512 1440 4 4 true LLaMA 12 244M
Replogle-Nadig 32 128 4 4 false GPT2 8 10M

Table 4: Architectural details for ST components. G denotes the number of genes (Eq. 13),
E the dimension of cell embeddings (if used) (Eq. 22), Dpert the dimension of perturbation
features (Eq. 14), Dbatch the dimension of batch features (Eq. 15), and h the shared hidden
dimension. All MLPs use GELU activation and Layer Normalization before activation, unless
specified otherwise.

Component Architecture Layer Dimensions Activation Normalization Dropout

fcell 4-layer MLP (G or E) → h → h → h → h GELU LayerNorm None
fpert 4-layer MLP Dpert → h → h → h → h GELU LayerNorm None
fbatch Embedding Lyr. Dbatch → h N/A N/A None
fST LLaMA Transf. h (input to each of 4 layers) SwiGLU RMSNorm None
frecon Linear Layer h → G or E N/A N/A None
fdecode 3-layer MLP h → 1024 → 512 → G GELU LayerNorm 0.1
fconf 3-layer MLP h → h/2 → h/4 → 1 GELU LayerNorm None

For the fine-tuning tasks (Fig. 3G), we initialize a new ST model using the pretrained
weights while selectively reinitializing specific components that are dataset-specific. In par-
ticular, the perturbation encoder fpert is reinitialized to enable transfer across perturbation
modalities. If ST is trained using cell embeddings, the gene decoder fdecode is also reinitial-
ized to adapt to differences in gene coverage between datasets. Since different experimental
platforms and datasets typically measure distinct subsets of genes, the decoder must be
retrained to map from the shared embedding space to the target dataset’s specific gene
expression space. All other components — fcell, fbatch, and fST — retain their pretrained
weights and are finetuned on the target dataset.

4.6.3. SE Hyperparameters

SE is a 600M parameter encoder-decoder model designed to learn cell representations by
predicting gene expression variability. The encoder consists of 16 transformer layers, each
with 16 attention heads and hidden dimension h = 2048. Each layer uses pre-normalization
with a feed-forward network that expands to dimension 3 × h, and uses GELU activation.
We apply dropout with probability 0.1 to both attention and feed-forward layers. The
decoder is a multi-layer-perceptron (MLP), trained to recover gene expression given learned
cell embeddings and target gene embeddings. We used the AdamW optimizer (Loshchilov
and Hutter, 2017) with a maximum learning rate of 10−5, weight decay of 0.01, and gradient
clipping with zclip (Kumar et al., 2025). The learning rate schedule consisted of linear
warmup for the first 3% of total steps, followed by cosine annealing to 30% of the maximum
learning rate. Before training, all SE weights are initialized sampling from Kaiming Uniform.
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4.6.4. SE Training Details

SE was trained on a large-scale corpus of 14,420 AnnData files spanning 167 million human
cells across the Arc scBaseCount (Youngblut et al., 2025), CZ CELL×GENE (Program et al.,
2025), and Tahoe-100M (Zhang et al., 2025) datasets for 4 epochs. To avoid data leakage,
datasets were split into separate training and validation sets at the dataset level. To enable
efficient training at scale, we utilize Flash Attention 2 (Dao, 2024), with mixed precision
(bf16) training (Kalamkar et al., 2019). Training was distributed across 4 compute nodes,
each with 8 NVIDIA H100 GPUs. The model was trained with an effective batch size of
3,072, using per-device batch size of 24 and gradient accumulation over 4 steps.

4.7. Evaluation

To comprehensively assess the ability of State to model perturbation effects, we designed an
evaluation framework, Cell-Eval, that captures both expression-level accuracy and biologi-
cally meaningful patterns of differential expression. Cell-Eval measures not only statistical
performance but also the model’s utility in simulating realistic Perturb-seq experiments.

4.7.1. Perturbation Evaluation Metrics

A key goal for perturbation models is to distinguish between different perturbation effects.
Cell-Eval evaluates this using several complementary metrics:

Perturbation Discrimination Score. Adapted from Wu et al. (2024), this metric ranks
predicted post-perturbation expression profiles by their similarity to ground truth. The score
is defined as the normalized rank of the ground truth from the predicted perturbation with
respect to all ground truth perturbations. It directly evaluates whether models can recover
the relative differences between perturbations. In Wu et al. (2024), the rank ordering is
computed using cosine similarity; we compute using Manhattan distances of transcriptomes
due to two factors: larger sensitivity to magnitudes (Fig. S10) and the lack of normalization
in our loss (Steck et al., 2024). Specifically, let T be the number of distinct perturbations,
yt the ground-truth profile for perturbation t, and ŷt its predicted profile. Using a distance
d(·, ·) (here Manhattan or Euclidean), define

rt =
∑
p̸=t

1
{
d(ŷt, yp) < d(ŷt, yt)

}
, (rank)

i.e. the number of other perturbations whose ground-truth profile is closer to ŷt than the
correct one. The per-perturbation score is

PDisct = rt

T
, (normalized rank)
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ranging in [0, 1) with PDisct = 0 indicating a perfect match (no closer profiles) and values
near 1 signaling poor discrimination. The overall score is the mean

PDisc = 1
T

T∑
t=1

PDisct. (overall)

We report the normalized inverse perturbation discrimination score:

PDiscNorm = 1 − 2PDisc. (normalized overall)

so that a random predictor receives a score of 0.0, and a perfect predictor receives a score of
1.0.

Pearson Delta Correlation. This metric calculates a Pearson correlation coefficient be-
tween the predicted and observed expression deltas. The expression delta is computed as
the difference in transcriptomes between a perturbed pseudobulk and an unperturbed pseu-
dobulk. Specifically, for each perturbation t we form a pseudobulk p̄t and a control c̄ and
compute the expression delta: ∆t = |p̄t − c̄|, the element-wise absolute difference between
the mean expression of perturbed cells (p̄t) and control cells (c̄). The evaluation score is the
Pearson correlation

P∆Corr = corr
(
∆pred, ∆real

)
,

computed with scipy.stats.pearsonr across all perturbations.

Adjusted Mutual Information (AMI). AMI is used to assess how well the model pre-
serves the clustering structure of perturbations in the learned embedding space. We compute
AMI by first aggregating cells by perturbation, then computing centroids for each pertur-
bation by averaging the embeddings of all associated cells in both the real and predicted
datasets. We then perform Leiden clustering on these centroids and compare the predicted
cluster labels to the true cluster labels using AMI. The maximum AMI score across all res-
olutions is reported as the final metric, reflecting the degree to which the model’s predicted
perturbation space captures the global structure of biological perturbations. Where R is
the set of Leiden clustering resolutions, and Ctrue

r and Cpred
r are the clusterings of real and

predicted centroids at resolution r,

AMI∗ = max
r∈R

AMI
(
Ctrue

r , Cpred
r

)
(39)

Mean Absolute Error (MAE) & Mean Squared Error (MSE). To assess preserva-
tion of shifts we calculate the MAE and MSE of each perturbation between the predicted and
ground truth datasets. The MAE/MSE metrics are evaluated over predicted and observed
pseudobulks. Formally, for perturbation t, let p̄t and pt denote the predicted and observed
pseudobulked expressions, respectively. Then,
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MAE = 1
T

T∑
t=1

∥p̄t − pt∥1, MSE = 1
T

T∑
t=1

∥p̂t − pt∥2
2. (40)

4.7.2. Differential Expression

To evaluate biological relevance, Cell-Eval performs a differential expression analysis us-
ing the Wilcoxon rank-sum test and adjusts for multiple hypotheses using the Benjamini-
Hochberg procedure, applied to both observed values and model predictions in test cell lines.

Notation. Fix a perturbation t ∈ [T ] = {1, . . . , T} and let G be the set of all genes.
Define G(k)

t,true and G(k)
t,pred as the top-k significant DE genes (padj < 0.05) in ground truth and

predictions, ranked by log-fold changes |∆tg|, G(DE)
t,true and G

(DE)
t,pred as the complete significant

sets. All rank correlations are Spearman’s, denoted by ρrank.

Cell-Eval also evaluates model performance using many complementary metrics:

DE Overlap Accuracy For each perturbation, we identify the top k differentially ex-
pressed genes (k = 50, 100, 200, N), filtered by adjusted p-value and ranked by absolute log
fold change. We compute the intersection between the predicted and true DEG sets and
report the overlap as a fraction of k. When k = N the k value varies by perturbation where
N is the total number of differentially expressed genes in the true DEG set. When k is not
specified, we are referring to DE Overlap at N . That is,

Overlapt,k =

∣∣∣G(k)
t,true ∩G

(k)
t,pred

∣∣∣
k

. (41)

Top-k precision. For each perturbation, we compute how many of the top k DEGs from
the ground truth appear in the model’s top k predicted DEGs, measuring precision at various
thresholds. That is,

Precisiont,k =

∣∣∣G(k)
t,true ∩G

(k)
t,pred

∣∣∣∣∣∣G(k)
t,pred

∣∣∣ . (42)

Directionality Agreement. For each perturbation, we identify the set of significantly
differentially expressed (DE) genes in the ground truth using an adjusted p-value threshold
(e.g., p < 0.05). We then find the intersection between the predicted and observed DE gene
sets. For each overlapping gene, we check whether the predicted and true fold changes have
the same direction. The directionality agreement is defined as the fraction of overlapping
genes for which the predicted and observed directions match. Formally, where G∩

t = G
(DE)
t,true ∩
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G
(DE)
t,pred and where log-fold changes ∆tg (true), ∆̂tg (predicted). That is,

DirAgreet = |{g ∈ G∩
t : sgn(∆̂tg) = sgn(∆tg)}|

|G∩
t |

. (43)

Spearman Correlation. We compute the Spearman rank correlation between predicted
and observed fold changes, restricted to genes that are significantly DE in ground truth.
For each perturbation, we extract the list of significant genes (based on the adjusted p-value
threshold) and compute the Spearman correlation coefficient on the log fold-changes between
predicted and ground truth. That is,

Spearmant = ρrank
(
∆̂t,G∗

t
, ∆t,G∗

t

)
. (44)

ROC-AUC. To assess the model’s ability to distinguish significant from non-significant
DE genes, we assign binary labels to each gene in the observed data (1 if p < 0.05, 0 oth-
erwise) and use predicted − log10 (adjusted p-values) as confidence scores. We compute the
true positive rate (TPR) and false positive rate (FPR) at multiple thresholds and calculate
the area under the ROC curve using auc. This metric evaluates the model’s ability to sep-
arate significant from nonsignificant genes regardless of the classification threshold. That
is,

ROC−AUCt =
∫ 1

0
TPRt(FPR) dFPR. (45)

PR-AUC. To measure the precision recall tradeoff of the model in identifying significant
DE genes, as in ROC-AUC, we use binary labels from the observed and predicted − log10(p-
values) as scores. This metric reflects the model’s ability to recover true positives with high
precision when significant DE genes are sparse. That is,

PR−AUCt =
∫ 1

0
Precisiont(r) dRecall. (46)

Effect sizes. To compare the relative effect sizes of perturbations we calculate Spearman
correlation coefficients for each perturbation on the number of differentially expressed genes
(adjusted p-value < 0.05) between predicted and ground truth. This lets us assess whether
models accurately capture relative effect sizes. Formally, for set sizes nt = |G(DE)

t,true|, n̂t =
|G(DE)

t,pred|, we compute

SizeCorr = ρrank
(
(nt)T

t=1, (n̂t)T
t=1

)
. (47)

4.7.3. Cell Embedding Evaluation Metrics

We also evaluated cell embeddings using both intrinsic and extrinsic metrics (Fig. 3D).
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Intrinsic Evaluation. To assess the extent to which embeddings capture perturbation-
specific information, we trained a multilayer perceptron (MLP) with one hidden layer to
classify perturbation labels from cell embeddings, measuring AUROC and accuracy. This
classification task was performed separately for each cell line, with data partitioned such
that 20% of cells from each perturbation group were randomly assigned to the test set and
the remaining 80% to the training set. The MLP was trained using a cross-entropy loss.
High classification performance indicates that embeddings maintain distinct representations
of perturbation-induced states.

Extrinsic Evaluation. To evaluate the downstream utility of various cell embeddings
(Fig. 3E), we compared the performance of ST when trained with different embedding
spaces. This approach captures the idea that embeddings rich in cellular information may
not always be optimal for modeling perturbation effects. The ideal embedding space should
balance both: it should preserve perturbation-specific information while supporting accurate
prediction of perturbation-induced transitions across cell states.

4.7.4. Other Evaluations

Drug Similarity Analysis. To evaluate how well different models preserved the relational
structure between drug perturbations, we first constructed a representation of each drug as
a vector of log2-fold changes in gene expression across cell lines. These vectors were aligned
to a shared gene × cell line space. Pairwise drug-drug similarities were then calculated
using cosine similarity. To assess the structural preservation of perturbations, we applied
hierarchical clustering with average linkage to both the real and predicted distance matrices
and computed the Adjusted Rand Index (ARI) between the resulting cluster assignments
(using k = 5 clusters).

Cell Set Scaling. To evaluate the impact of cell set size in State, we ablated the number
of cells per set and the batch size, such that the batch size times the cell set size was always
16,384, and measured the validation loss as a function of floating-point operations (FLOPs)
(Fig. 1C). These models were also compared to a pseudobulk model that replaces the self-
attention in State with mean pooling, and masked attention version of State, where each
cell can only attend to itself. As the cell set size increased, the validation loss improved
significantly on held out cell lines, up to an optimal value of 256.

Survival Prediction Analysis. In order to assess whether the model could be used to
predict the survival of each cell line within each drug well, a previously used measure of
fitness (Yu et al., 2024), we built a model to predict survival based on the mean expression
of the 2K HVG set relative to DMSO for each cell type. Specifically, for the held-out set
of cell lines and perturbations, we calculated a vector of true gene expression differences
between DMSO and the perturbation. Then, we trained a support vector machine model to
predict survival values based on these vectors, with all 3 doses from 35 randomly selected
drugs held out. Finally, we used the same SVM model to predict the survival for these held-
out treatments, first predicting on the true gene expression counts, followed by the predicted,

38

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 10, 2025. ; https://doi.org/10.1101/2025.06.26.661135doi: bioRxiv preprint 

https://doi.org/10.1101/2025.06.26.661135
http://creativecommons.org/licenses/by/4.0/


cell-type mean, and pert-mean. In order to calculate confidence intervals, this process was
repeated 10 times, with a different set of drugs being held out each time.

The SVM model was a default scikit-learn support vector regressor model, with an “rbf”
kernel. Relative fitness for each condition was calculated as log2

(
cell_line_countstreatment
cell_line_countsDMSO

)
, where

DMSO is matched to be in the same plate as the treatment.

4.7.5. Baseline Models

We describe and formalize various baseline models used as comparisons to State.

Perturbation Mean Baseline. This baseline predicts a perturbed expression profile as
the control mean for that cell context plus a global perturbation offset learned from the
training data. For each cell type c and perturbation p we first compute cell-type–specific
means

µctrl
c = 1

|Cc|
∑
i∈Cc

x(i), µpert
c,p = 1

|Pc,p|
∑

i∈Pc,p

x(i),

where Cc is the set of control cells of type c and Pc,p the perturbed cells of type c receiving
perturbation p. Their difference is the cell-type offset δc,p = µpert

c,p − µctrl
c . Averaging across

all cell types that contain p yields a global offset

δp = 1
|Cp|

∑
c∈Cp

δc,p, Cp = {c | |Pc,p| > 0},

Given a test cell type t and a perturbation label p the model outputs

x̂ = µctrl
t + δp, δctrl ≡ 0.

Thus, controls are reproduced exactly, while every non-control perturbation receives the
same global shift.

Context Mean Baseline. This baseline predicts a cell’s post-perturbation profile by re-
turning the average perturbed expression of cells of the same cell type observed in the training
set. For every cell type c we collect all training cells whose perturbation is not the control
and form the pseudo-bulk mean

µc = 1
|Tc|

∑
i∈Tc

x(i), Tc =
{
i

∣∣∣ cell_type(i) = c, p(i) ̸= ctrl
}
.

At inference time, for a test cell i with cell type c(i) and perturbation label p(i) we predict

x̂(i) =


x(i) p(i) = ctrl,

µc(i) p(i) ̸= ctrl.
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i.e. controls are passed through unchanged, whereas perturbed cells inherit their cell-type
mean.

Linear Baseline. This baseline treats a perturbation as a low-rank, gene-wide linear dis-
placement that is added to each cell’s own control expression (Ahlmann-Eltze et al., 2024).
Let G ∈ RG×dg be a fixed gene-embedding matrix (e.g. pretrained protein feature vectors,
one row per gene) and P ∈ RP ×dp a fixed perturbation-embedding matrix (one row per per-
turbation, one-hot). From the training set we first build an “expression-change” pseudo-bulk

Yg,p = 1
|Pp|

∑
i∈Pp

(
xpert,(i)

g − xctrl,(i)
g

)
, Pp =

{
i | p(i) = p

}
, (48)

so Y ∈ RG×P stores, for every gene g and perturbation p, the average change relative to that
cell’s matched control. The model seeks a low-rank map K ∈ Rdg×dp and a gene-wise bias
b ∈ RG such that

Y ≈ GKP⊤ + b 1⊤. (49)

We obtain K in a single shot by solving the ridge-regularized least-squares problem

min
K

∥∥∥Y −GKP⊤ − b 1⊤
∥∥∥2

F
+ λ∥K∥2

F , b = 1
P
Y 1, (50)

whose closed-form solution is

K =
(
G⊤G+ λI

)−1
G⊤Y P

(
P⊤P + λI

)−1
. (51)

No gradient-based optimization is required, as once K is computed the model is fixed. For
a test cell i with its own control profile xctrl,(i) and perturbation label p(i) the prediction is

x̂(i) =


xctrl,(i) p(i) = ctrl,

xctrl,(i) +GK Pp(i) + b p(i) ̸= ctrl,
(52)

where Pp(i) denotes the row of P corresponding to perturbation p(i). Thus each prediction
preserves the cell’s basal state exactly and adds a perturbation-specific, low-rank shift learned
from the training cohort, with model capacity controlled solely by the embedding dimensions
and the ridge parameter λ.

Deep Learning Baselines. We benchmark State against several baselines that leverage
related deep learning architectures for predicting perturbation effects across diverse cell con-
texts. These include two autoencoder-based models, scVI (Lopez et al., 2018) and CPA (Lot-
follahi et al., 2023), as well as the transformer-based scGPT model (Cui et al., 2024). scVI
models gene expression distributions while accounting for technical noise and batch effects.
CPA learns a compositional latent space that captures the additive effects of perturbation,
dosage, and cell type. scGPT leverages generative pretraining on over 33 million cells to
support zero-shot generalization across tasks including perturbation prediction. All models
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are evaluated using the respective datasets and setup described in Fig. 2B.
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5. Analysis: State Transition as Optimal Transport
In this section, we analyze the theoretical capacity of State Transition (ST) in learning op-
timal transport mappings across cellular distributions. First, we prove that the solution
family of ST covers the optimal transport map between control and perturbed cell distri-
butions. Second, we derive explicit constraints on ST for learning the unique continuous
optimal transport map. Finally, we discuss the implications of the theoretical analysis and
possible future directions.

5.1. ST Asymptotic Behavior and Solution Family

Optimal Transport (OT) provides a framework for comparing and aligning probability dis-
tributions by finding a mapping or coupling that minimizes a certain fixed cost. Traditional
OT methods explicitly define a cost function and solve a linear program or iterative algo-
rithm to find an optimal coupling or map (Cuturi, 2013; Peyré et al., 2019). The advent
of deep learning has given rise to Neural Optimal Transport (Neural OT), which leverages
neural networks to parameterize and solve OT problems (Bunne et al., 2024b, 2023).

Neural OT methods (Bunne et al., 2024b) typically operate by either: (1) Parameterizing
the OT map T directly using a neural network designed to enforce OT properties; (2) Param-
eterizing the OT coupling matrix (P) or its dual potentials (e.g., α, β) with neural networks;
(3) Explicitly minimizing an OT cost function (or its dual objective) as the primary loss. For
instance, CellOT (Bunne et al., 2023) explicitly parameterizes the convex potentials of the
dual optimal transport problem using Input Convex Neural Networks (ICNNs) to learn an
optimal transport map Tk = ∇gk for each perturbation k, with gk one of the dual potentials.

ST, while not explicitly solving an OT problem in the traditional sense, performs a task
related to Neural OT: learning a transformation that aligns unperturbed and perturbed
cell distributions. This transformation is learned, not explicitly engineered for a fixed cost.
However, motivated by rigorous theoretical work that demonstrates how transformers with
fixed parameters can provably solve optimal transport by implementing gradient descent
through engineered prompts (Daneshmand, 2024), we demonstrate that, in an asymptotic
setting, the solution family of our trained and optimized ST contains the unique continuous
optimal transport map between cellular distributions when regularity assumptions on the
distributions are met.

For this analysis, we focus on a single training mini-batch, denoted as the b-th batch. We
start by describing the mathematical formulation of ST, which aims to learn the effect of one
single perturbation from cell population X(b)

ctrl ∈ RS×G to X(b)
pert ∈ RS×G. Recall that the input

of the transformer for this batch is constructed by summing the control cell embeddings with
the broadcasted perturbation and batch embeddings, H(b) = H(b)

cell + H(b)
pert + H(b)

batch ∈ RS×d

(Eq. 16). The output of the transformer is computed as O(b) = H(b) + fST(H(b)) ∈ RS×d,
where fST is the transformer encoder (Eq. 17). We consider fST with L layers, where the
input to the first layer is H0 = H(b):

fST = FL ◦ · · · ◦ F1, Hi = Fi(Hi−1) = (G+ Id)
(
Hi−1 + Ai(Hi−1,Hi−1)V i(Hi−1)

)
. (53)
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Here Ai denotes the multi-head attention, V i denotes the attention value encoder, and
G + Id denotes the feedforward layer combined with the residual connection. The layer
normalization function is absorbed in each constructed function. Finally, for the b-th batch,
a cell-wise linear transform defines the final output X̂(b)

target for the S cells (Eq. 18). We can
equivalently rewrite this for each cell s as:

X̂(b)
pert, s = frecon(O(b)) = O(b)

s Wrecon + brecon ∈ RG, (54)

where X̂(b)
pert, s denotes the s-th row of X̂(b)

pert, containing the predicted state of cell s, obtained
by its embedding O(b)

s which denotes the s-th row of O(b).

The constants H(b)
ST + H(b)

batch, as well as the transforms fcell, frecon can be absorbed in
the first and last layers of fST, which we therefore define as fpert,batch

ST . Therefore, we can
equivalently rewrite the predicted state of cell s as:

X̂(b)
pert,s =

[ (
frecon ◦ fcell + fpert,batch

sets

)
(X(b)

ctrl)
]

s
, (55)

where [·]s indicates that we access the s-th row of the obtained output. To simplify our
analysis, we focus on the asymptotic setting where the cell set size S tend to infinity. Recall
that each cell is sampled from the distribution Dctrl. Then, as the cell number S → ∞
with certain regularity conditions, the output for a single cell X̂(b)

pert,s depends solely on X(b)
ctrl,s

itself and the overall distribution Dctrl, because the attention mechanism effectively processes
information from the entire distribution. Thus, the limiting operator can be defined per cell
as:

X̂(b)
pert, s =

[ (
frecon ◦ fcell + fpert,batch

ST,Dctrl

)
(X(b)

ctrl)
]

s
:= Fpert,batch(X(b)

ctrl,s). (56)

More detailed treatments are provided in recent works considering the limiting mean-field
dynamics of transformers (Furuya et al., 2024; Biswal et al., 2024). Notably, Eq. 56 holds
for an arbitrary cell s sampled from the distribution Dctrl. The operator Fpert,batch de-
fines a mapping from Dctrl to D̂pert. We further assume that the transformer model is
expressive enough, such that minimizing the empirical kernel MMD objective is possible:
M̂MD(X̂pert,Xpert) = 0 with energy kernel k(u, v) = −∥u− v∥2. Our following lemma shows
that zero empirical MMD indicates distributional matching with probability 1.

Lemma 1 (Distributional matching via Empirical MMD). Suppose that the supports of
D̂pert,Dpert are bounded. When the cell number S → ∞, if the empirical MMD reaches zero,
that is, M̂MD(X̂(b)

pert,X
(b)
pert) = 0, then with probability 1, we have

D̂pert = Dpert. (57)

Reversely, if D̂pert = Dpert, then with probability 1, we have MMD(X̂(b)
pert,X

(b)
pert) = 0.

Proof. The empirical MMD used as the ST objective is defined as

M̂MD
2
(X̂(b)

pert,X
(b)
pert) = 1

S2

S∑
i=1

S∑
j=1

k(x̂(i), x̂(j)) + k(x(i),x(j)) − 2k(x̂(i),x(j)). (58)
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Here we use x̂(i), x̂(j),x(i),x(j) to denote cells in X̂(b)
pert,X

(b)
pert respectively. The corresponding

theoretical MMD on distributions D̂pert,Dpert is defined as

MMD2(D̂pert,Dpert) = Ex,x′∼D̂pert
[k(x, x′)] + Ey,y′∼Dpert [k(y, y′)] − 2Ex∼D̂pert,y∼Dpert

[k(x, y)].
(59)

The empirical MMD is a V-statistic (Gretton et al., 2012), thus when the support sets are
bounded (thus the kernel value k is also bounded), by the result of SLLN for V-statistics (Ho-
effding, 1961; De la Pena and Giné, 2012), we have

M̂MD
2
(X̂(b)

pert,X
(b)
pert)

a.s.→ MMD2(D̂pert,Dpert). (60)

With the energy kernel k(x, y) = −∥x− y∥2, the theoretical MMD coincides with the energy
distance D2 between distributions:

MMD2(D̂pert,Dpert) ≡ D2(D̂pert,Dpert). (61)

Finally, zero energy distance implies equal distributions and vice versa (Rizzo and Székely,
2016).

We define the continuous solution families that achieves zero empirical MMD and dis-
tributional matching as

F̂ = {F ∈ C|M̂MD(X̂(b)
pert,X

(b)
pert) = 0 and X̂(b)

pert,s = F (X̂(b)
ctrl,s)},

F = {F ∈ C|F (Dctrl) = Dpert}.
(62)

Then, by Lemma 1, we have

F̂ = F with probability 1. (63)

To simplify our analysis, we assume that our model is expressive enough to learn any
element in F̂ , which is identical to F with probability 1. We next demonstrate that, under
mild regularity conditions, the unique optimal transport mapping from Dctrl to Dpert is within
the solution family F , F̂ .

Theorem 2 (Optimal Transport Mapping within the Solution Family of State). Assume
the densities of Dctrl,Dpert are absolute continuous and bounded, and the support sets are
strictly convex and compact with C2 boundary. Then the continuous optimal transport map
T from Dctrl to Dpert associated with the squared distance cost c(x, y) = ∥x − y∥2 satisfies
T ∈ F , F̂ with probability 1.

Proof. Under the regularity conditions posed for distributions Dctrl,Dpert, applying Caf-
farelli’s theorem (Caffarelli, 1992) shows that there exists an continuous and differentiable
optimal transport map T ∈ C1 between Dctrl,Dpert. Thus by definition, T ∈ F . Furthermore
by Lemma 1, F = F̂ with probability 1, in which case we also have T ∈ F̂ .
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While the theorem shows the existence of the continuous optimal transport map T and
that it is covered by the solution family F̂ , F̂ contains infinite additional elements beyond
T , thus the optimal transport solution is not guaranteed to be learned by the model. This
inherent flexibility is advantageous for State, as biological transformations often involve
complexities and unmodeled variations that may not align perfectly with a single, fixed
optimal transport solution. Nevertheless, in the next theorem, we show that if we impose
constraints on the Jacobian in the ST model objective, then the optimal transport mapping
is guaranteed to be learned:

Theorem 3 (Constrained ST Model for Unique OT Map). Under the same assumptions as
Theorem 2, consider the constrained solution family:

F̂∗ = {F ∈ C1|M̂MD(X̂(b)
pert,X

(b)
pert) = 0 and X̂(b)

pert,s = F (X̂(b)
ctrl,s);

JF =
{
∂Fi

xj

}
ij

is symmetric and semi-positive definite}.
(64)

Then F̂∗ uniquely contains the continuous OT mapping T with probability 1: F̂∗ = {T}.

Proof. By Breiner’s theorem (Brenier, 1991), T is the unique continuous optimal transport
mapping regarding the quadratic cost, if and only if it is the gradient of a convex function
ψ: T = ∇ψ. As we already have T ∈ C1 by Caffarelli’s theorem, the condition is equivalent
to symmetric and semi-positive definite Jacobian in T . Further by Lemma 1, T ∈ F̂∗ with
probability 1, and the uniqueness of T implies F̂∗ = {T}.

Our theoretical analysis can be seen as a corollary of Caffarelli and Brenier’s theorems
on continuous optimal transport maps with quadratic cost. In particular, the final the-
orem hints that, we can enforce the model to learn an optimal transport mapping from
Dctrl to Dpert, through imposing adequate regularizations on the Jacobian of the mapping.
More precise constraints on the Jacobian may require additional architecture designs that
explicitly achieve Jacobian constraints, or directly retrieve gradients of convex neural net-
works (Makkuva et al., 2020; Bunne et al., 2023).

Despite the large feasible solution set that contains numerous overfitting solutions, neural
network models have shown remarkable generalization capacities. An important aspect on
neural network generalization capabilities is implicit bias (Soudry et al., 2018; Gunasekar
et al., 2018; Vardi, 2023), which means gradient descent favor certain solutions, for instance,
those minimally shifted compared with initial weights (Gunasekar et al., 2018). Therefore we
hypothesize that the optimization of ST may lead to solutions with smallest “overall shifts”
from Dctrl to Dpert, thus resembling a optimal transport mapping with some unknown cost
function. Theoretical characterization of the implicit bias in the transition model is out of
the scope here and remains promising future research.

6. Exploring the Latent Space of State
Initial interpretability analyses reveal that State’s predictions can be better understood
through its internal computation patterns, particularly suggesting that the transition model
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architecture harnesses heterogeneity to enhance perturbation prediction.

State embeddings display markers of biological knowledge learned from self-
supervision. We begin by evaluating cell embeddings produced by SE. Given the embed-
ding model’s impressive performance in a zero-shot setting across datasets, it is instructive
to examine State’s embedding structure. As shown in Fig. S9A, the principal components
of State embeddings capture nuanced distinctions across and within cell types, suggesting a
rich representation for transfer. Notably, embeddings for K-562 and Jurkat (two leukemia
cell lines) cluster closely in this space, implying similarity under State’s learned represen-
tation, following results in Nadig et al. (2025). Importantly, SE was trained without direct
knowledge that K-562 and Jurkat share these similarities, and recognizes and leverages such
biological concepts purely from self-supervision over gene expression data.

The State transition model leverages cell heterogeneity through self-attention.
Early efforts to reverse-engineer deep machine learning models have commonly focused on
visualizing activations, revealing how neural networks encode concepts (Zeiler and Fergus,
2014; Olah et al., 2017; Bau et al., 2017; Clark et al., 2019). Similarly to these works, since all
inputs to ST originate from the same cell line, we aim to unpack the model’s inner workings
with respect to cell heterogeneity. To accomplish this, norm-based contribution magnitudes
and self-attention maps for well-defined cell sets can discover general behaviors in the model’s
methods for prediction. Running inference with the Replogle-Nadig dataset, we first find
that the largest changes to hidden state happen at the final layer of the transition model,
across all attention heads (Fig. S9B). A deeper dive into these heads reveals intriguing
structural behaviors. We find that the attention heads on the final layer take on extremely
different roles. Specifically, we identify major two classes of heads:

1. Heterogeneity-Sensitive heads, which exhibit scattered, high-magnitude Query-
Key interactions across many cells or only focus on the corresponding Key matrix for
the Query (Fig. S9C&D).

2. Heterogeneity-Insensitive heads, which fixate on either narrow Key matrices, often
from just a few cells, and broadly apply across all Queries (Fig. S9C&D). These
behaviors mimic operations akin to pseudobulking (i.e. averaging across single-cell
profiles to mimic bulk measurements) or PerturbMean-style computations, two robust
but less expressive baselines to State.

To further dissect heterogeneity-sensitive attention behaviors, we construct an inference-
time example with a mixed cell set composed of 50% K-562 and 50% Jurkat cells (Fig. S9D).
Upon inputting this hybrid set, we observe that certain attention heads adaptively shift their
behavior: heterogeneity-aware heads become more polarized, and a novel insensitive head
emerges, one that selectively utilizes only the Key matrices from one cell type while com-
puting over Queries from both. This asymmetric attention pattern reveals that State is
not merely averaging across cell sets, but actively discriminating between them in a context-
sensitive fashion. Such computations suggest that the transition model internalizes repre-
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sentations of heterogeneity and dynamically leverages them during inference for improved
prediction performance.

These initial results underscore the interplay of leveraging transformer interpretability
to better understand perturbation effects in cells. Future work can apply more sophisticated
interpretability methods—beyond attention maps, which have shown limited utility for exact
localization (Hase et al., 2023; Chefer et al., 2021)—to better understand State’s prediction
mechanisms, building on approaches that optimize for extracting sparse, finer-grained model
features (Bricken et al., 2023; Bhaskar et al., 2024; Dunefsky et al., 2024; Ameisen et al.,
2025).
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Code and model availability. All code for this project is available at
https://github.com/ArcInstitute/State,
https://github.com/ArcInstitute/Cell-load,
https://github.com/ArcInstitute/Cell-eval,
https://github.com/ArcInstitute/State-reproduce.
Model parameters are available on Huggingface:
https://huggingface.co/arcinstitute/SE-600M,
https://huggingface.co/arcinstitute/ST-Tahoe,
https://huggingface.co/arcinstitute/ST-Parse
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8. Supplementary Figures

Figure S1: Cell set design for the ST perturbation model. Cells were grouped based on
shared features (e.g., tissue, lineage, or batch), enabling the model to learn perturbation effects
conditioned on set size and the matched covariates.
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Figure S2: Comprehensive model architecture visualization for State (A) Model archi-
tecture for ST with inputs in embedding space. When working directly in gene expression space, the
gene decoder is swapped out with the gene reconstruction head, a simple linear layer that projects
the transformer outputs back to gene expression space. (B) Model architecture for SE. The trans-
former outputs for the gene set inputted into the model are not used for downstream perturbation
prediction. The [CLS] token is transformed into a strong representation of cell state, [State], to
predict gene expression variability.
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Figure S3: PCA visualization of Tahoe-100M pseudobulks reveals clusters of
similar cell types. Pseudobulks were computed by averaging the counts over all cells with
matching cell line, perturbation, and plate, and then aggregated into one pseudobulk per cell
line. Generalization splits were chosen accordingly to not be too difficult (including some
cell types near clusters), nor too easy (including some outlier cell types). The five holdout
cell lines used in this analysis are: C32, HOP62, HepG2/C3A, Hs 766T, PANC-1.
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Figure S4: Additional metrics for evaluating identification of significant genes. Models
were trained and evaluated on chemical, signaling and genetic perturbation datasets (Zhang et al.,
2025; Replogle et al., 2022; Nadig et al., 2025). Comparisons included the mean baselines from
(A), a simple linear model (Ahlmann-Eltze et al., 2024), autoencoder-based models (scVI (Lopez
et al., 2018), CPA (Lotfollahi et al., 2023)), and a foundation model (scGPT (Cui et al., 2024)).
Performance was assessed using standard Perturb-Seq outputs: expression counts and differentially
expressed (DE) genes, with the following metrics considered: (A) Area Under the Precision-Recall
Curve (AUPRC), summarizing model performance in identifying true DE genes, especially under
class imbalance. (B) Heatmaps comparing the true overall perturbation effects as measured by
number of differentially expressed genes with the predicted perturbation effect sizes by State.
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Figure S5: Additional metrics for evaluating top DE gene prediction. Models were
trained and evaluated on both chemical, signaling and genetic perturbation datasets (Zhang et al.,
2025; Replogle et al., 2022; Nadig et al., 2025). Comparisons included the mean baselines from
(A), a simple linear model (Ahlmann-Eltze et al., 2024), autoencoder-based models (scVI (Lopez
et al., 2018), CPA (Lotfollahi et al., 2023)), and a foundation model (scGPT (Cui et al., 2024)).
Performance was assessed using standard Perturb-Seq outputs: expression counts and differentially
expressed (DE) genes, with the following metrics considered: (A) Overlap@k: fraction of top-k
differentially expressed genes in the observed data that were also identified in model predictions,
evaluated across various values of k. (B) Precision@k: proportion of top-k predicted DE genes that
were truly significant in the observed data, measuring model precision at varying k thresholds.
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Figure S6: Tahoe performance by tissue. Performance comparison on five core metrics for
the State model trained to generalize across tissues. For each split, all cell lines belonging to a
specific tissue were included in the test set. 30% of perturbations from the test cell line were moved
to the training set. (A) Perturbation discrimination score. (B) Pearson correlation of predicted
and observed expression profiles. (C) DE gene overlap. (D) Log fold-change Spearman correlation
for significant DE genes. (E) Effect size correlation.
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Figure S7: Impact of State embedding on zero-shot model performance. Model per-
formance on perturbation effect prediction on a context for which perturbation data is completely
unobserved during training. Performance improvements correspond to change between ST + SE
and ST + HVG. Six metrics are considered (i) Perturbation Discrimination Score (ii) Pearson Cor-
relation (iii) AUPRC (iv) Spearman correlation (log fold changes) (v) DE Gene Overlap Accuracy
(vi) Spearman correlation (perturbation effect size).
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Figure S8: Impact of State embedding pretraining on zero-shot model performance.
(A) Spearman correlation between model predicted and true perturbation effect sizes when predict-
ing on a context for which perturbation data is completely unobserved during training. Performance
improvements correspond to change between ST + SE and ST + SE (Pretrained). Five datasets
are considered. (B) Model performance on perturbation effect prediction zero-shot on a context
that is unobserved during training. Performance improvements correspond to change between ST
+ SE and ST + SE (Pretrained). Six metrics are considered (i) Perturbation Discrimination Score
(ii) Pearson Correlation (iii) AUPRC (iv) Spearman correlation (log fold changes) (v) DE Gene
Overlap Accuracy (vi) Spearman correlation (perturbation effect size).
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Figure S9: Initial interpretability analyses indicate how State leverages learnt bio-
logical information to make it’s predictions. (A) SE, without biological labels, learns that
K-562 and Jurkat share similarities (both being from leukemia cell lines) just from gene expression
data. (B) The final layer in ST contributes largely to the changing hidden state, across all atten-
tion heads. (C) Visualizing the attention heads (Query × Key) for the final layer displays striking
variation across attention heads. (D) Constructing an inference-time example with a mixed cell set
of K-562 and Jurkat visually displays how self-attention can model heterogeneity across the cells in
the input set.
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Figure S10: Distributions of real gene expression data with different discrimination
operations displays how cosine similarity skews ranking metrics. We find that cosine
similarity, by not accounting for the magnitudes of genes in expression data, reflects excessive
similarity between real gene expression values and predicted values, which causes a distribution
shift in downstream rank based metrics. Comparably, Euclidean distances (L2) and Manhattan
distances (L1) better separate varying gene expressions within groups of cells.
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